
Copyright ©2018 The Khronos™ Group Inc. - Page 1

Standardizing All the Realities:
A Look at OpenXR

Kaye Mason
SIGGRAPH, August 2018

Copyright ©2018 The Khronos™ Group Inc. - Page 2

A Note on What We’ll Cover

Copyright ©2018 The Khronos™ Group Inc. - Page 3

A Note on What We’ll Cover
• An Overview of the Spec

- Proviso: The OpenXR specification is a work in progress.
Things will change between now and the release of the specification
- Jan 2017 (52pp) :: March 2018 (268pp) :: Aug 2018 (291pp)

The spec has bugs. Known and Unknown.
- Talk assumes that you know:

- Something about AR & VR
- Nothing about the Specification Process.

- This talk will not cover the whole spec!

• Live Demos of OpenXR-backed VR Systems (Starbreeze and Microsoft)
• Ample time will be given for Questions at the end!

- The spec is long…there may be some questions we can’t answer.
- I can’t answer questions about systems that aren’t stabilized.
- I can’t tell you when the spec will be released.

Copyright ©2018 The Khronos™ Group Inc. - Page 4

A Brief History of the Standard

Copyright ©2018 The Khronos™ Group Inc. - Page 5

Copyright ©2018 The Khronos™ Group Inc. - Page 6

A Brief History of the Standard
Call for Participation / Exploratory Group Formation -- Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation -- Winter F2F, January 2017: Vancouver

Specification Work -- Spring F2F, April 2017: Amsterdam

Specification Work -- Interim F2F, July 2017: Seattle

Defining the MVP -- Fall F2F, September 2017: Chicago

Resolving Implementation Blockers -- Winterim F2F, November 2017: Seattle

Raising Implementation Issues -- Winter F2F, January 2018: Taipei

First Public Information! -- GDC, March 2018: San Francisco

Provisional Release

Ratification and Release

Conformance Testing and Implementation

Present Day
Coming Soon

Implementation and Refinement -- Spring F2F, April 2018: Montreal

Implementation, Conformance and Refinement -- Fall F2F, September 2018

Updates & First Demonstration! -- SIGGRAPH, August 2018: Right Here, Right Now!

Copyright ©2018 The Khronos™ Group Inc. - Page 7

Goals and Philosophies

Copyright ©2018 The Khronos™ Group Inc. - Page 8

The Problem

Copyright ©2018 The Khronos™ Group Inc. - Page 9

The Solution

Copyright ©2018 The Khronos™ Group Inc. - Page 10

OpenXR Philosophies
Enable both VR and AR applications
The OpenXR standard unified common VR and AR functionality to streamline
software and hardware development for a wide variety of products and platforms

Be future-proof
While OpenXR 1.0 is focused on enabling the current state-of-the-art, the standard is
built around a flexible architecture and extensibility to support rapid innovation in
the software and hardware spaces for years to come

Do not try to predict the future of XR technology
While trying to predict the future details of XR would be foolhardy, OpenXR uses
forward-looking API design techniques to enable designers to easily harness new and
emerging technologies

Unify performance-critical concepts in XR application development
Developers can optimize to a single, predictable, universal target rather than add
application complexity to handle a variety of target platforms

1
2

3
4

Copyright ©2018 The Khronos™ Group Inc. - Page 11

The Structure

Application

OpenXR Application Layer

Runtime A

Runtime B

VR / AR Hardware

OpenXR Device Plugin Extension

VR / AR
Hardware

VR / AR
Hardware

Copyright ©2018 The Khronos™ Group Inc. - Page 12

Layered API

Application

OpenXR Application Layer

Runtime B

OpenXR Device Plugin Extension

VR / AR
Hardware

VR / AR
Hardware

xrDoSomething()

Layer1::xrDoSomething()

LayerN::xrDoSomething()

MyRuntime::xrDoSomething()

Copyright ©2018 The Khronos™ Group Inc. - Page 13

Architecture Overview

Copyright ©2018 The Khronos™ Group Inc. - Page 14

API Conventions and Primitives
Handles
Objects which are allocated by the runtime on behalf of the application are
represented by handles

Handles are:
• Opaque identifiers to the underlying object
• Lifetime generally managed by xrCreate* and xrDestroy* functions
• Hierarchical

- E.g. To create an XrSession handle, you must pass in a parent XrInstance
- Handles for children are only valid within their direct parent’s scope

Copyright ©2018 The Khronos™ Group Inc. - Page 15

API Conventions and Primitives
Semantic Paths

Properties of XrPaths:
• Hierarchical

• Stored in a string table

• Human-readable

• Can be pre-defined (reserved) or user-defined

• Handles

• [a-z,0-9,-,_,.,/]

• Null terminated

• Not file paths!
- Can’t use ./ or ../ for pathing

Copyright ©2018 The Khronos™ Group Inc. - Page 16

API Conventions and Primitives
Semantic Paths
Some paths are reserved by the specification for special purposes:

/user/hand/left, user/hand/right

/user/hand/primary, user/hand/secondary

/user/head

/space/head

/space/hand/left/grip

/devices/<vendor_name>/<unique_identifier>

/devices/<vendor_name>/<unique_identifier>/<type>/<component>

where <type> is: thumbstick, trigger, system, etc.
and <component> is: click, touch, value, delta_x, etc.

Copyright ©2018 The Khronos™ Group Inc. - Page 17

API Conventions and Primitives
XrSpace

XrSpace is one of the fundamental concepts
used throughout the API to help with making a
generalized understanding of the physical
tracking environment.

• The Runtime can hold any representation it
wants internally.

• XrSpaces are independent coordinate systems
tracked by the runtime, which can be related
to one another, and used as a basis for
functions that return spatial values

• In certain cases, such as motion controllers,
XrSpaces can be attached to tracked objects
for ease of reference

+y

+x

+z

+x

+y

/spaces/head

/spaces/hand/left/grip

Copyright ©2018 The Khronos™ Group Inc. - Page 18

The Loader, Extensions and Layers
Loader:
• Not required
• Complexity can vary
• Some platforms

have strict
requirements (i.e.,
mobile)

Copyright ©2018 The Khronos™ Group Inc. - Page 19

The Loader, Extensions and Layers
Loader:
• Loader Trampoline and Terminator Patterns

Copyright ©2018 The Khronos™ Group Inc. - Page 20

The Loader, Extensions and Layers
Loader:
• Loader Trampoline and Terminator Patterns

Copyright ©2018 The Khronos™ Group Inc. - Page 21

Core and Extensions
Core concepts that are fundamental to the
specification for all use cases
Examples: Instance management, tracking

Core Standard

KHR Extensions

EXT Extensions

Vendor Extensions

Functionality that a large classes of runtimes
will likely implement
Examples: Platform support, Device Plugin, Headless,

Tracking Bounds, Vulkan Extensions

Functionality that a few runtimes
might implement
Examples: Performance Settings, Thermals, Debug Utils

Functionality that is limited to a
specific vendor
Examples: Device specific functionality

Copyright ©2018 The Khronos™ Group Inc. - Page 22

Layers
We already saw how layers work with the loader. Some possible example layers:

Push detailed validation of API usage into a
layer so it can be turned off in production.Validation

Platform App Quality

Debug Panels

Yes, OpenXR allows you to do that, but on our
platform, it’s not smart.
Examples: Specialized hardware.

Capture information and display it.
Examples: Frame rate, frame drops, latency

Copyright ©2018 The Khronos™ Group Inc. - Page 23

Application Lifecycles

Android

(Launch)

OnCreate

OnStart

OnResume

(Running)

OnPause

OnStop

(Shut Down)

• Operating Systems can have very different application lifecycles.
• Here are two examples cases:

Windows 10

Not Running

(Activated)

Running In Foreground

(Leaving Foreground)

Running in Background

(Entering Foreground)

(Suspending)

Suspended

(Resuming)

Copyright ©2018 The Khronos™ Group Inc. - Page 24

Lifecycles: the Instance and the Session

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSession

xrBeginSession

XrInstance:
• The XrInstance is basically the application’s representation of the OpenXR runtime
• Can create multiple XrInstances, if supported by the runtime
• xrCreateInstance specifies app info, layers, and extensions for the instance.

Copyright ©2018 The Khronos™ Group Inc. - Page 25

Lifecycles: the Instance and the Session

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…

xrCreateSession

xrBeginSession

XrSession:
• XrSession represents an active interaction between the application and the runtime.
• XrSession can now have its own extensions.
• Swapchain management is done here.

Copyright ©2018 The Khronos™ Group Inc. - Page 26

Lifecycles: the Instance and the Session

Application

xrCreateInstance Loader

OpenXR Runtime A

OpenXR Runtime B

OpenXR Runtime C

KHR_Extension_1

KHR_Extension_3

KHR_Extension_1

EXT_Extension_7

…

…xrBeginSession

XrSession:
• Beginning an XrSession is how an application indicates it wants to render stuff.
• Applications use this to tell the runtime what to render and how.

xrCreateSession

Copyright ©2018 The Khronos™ Group Inc. - Page 27

Events

Events are messages sent from the runtime to the application. They’re put into a
queue by the runtime, and read from that queue by the application by xrPollEvent

Visibility Changed Whether or not the application is visible on the device

Focus Changed Whether or not the application is receiving input from the system

Request End Session Runtime wants the application to exit

Request End Instance Call xrDestroyInstance, because the runtime needs to update

Availability Changed Device attached or lost

Engagement Changed Device is put on or taken off

Copyright ©2018 The Khronos™ Group Inc. - Page 28

Input and Haptics

Input in OpenXR goes through a layer of
abstraction built around Input Actions
(XrActions). These allow application
developers to define input based on resulting
action (e.g. “Move,” “Jump,” “Teleport”)
rather than explicitly binding controls

While the application can suggest
recommended bindings, it is ultimately up to
the runtime to bind input sources to actions as
it sees fit (application’s recommendation, user
settings, etc.)

XrAction: “Teleport”

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

ControllerCorp

Copyright ©2018 The Khronos™ Group Inc. - Page 29

Input and Haptics
Forcing applications through this indirection has
several advantages:

• Greater future-proofing as improvements to
hardware and runtimes come out

“Dev teams are ephemeral,
platforms are forever”

• Allows for runtimes to “mix-and-match”
multiple input sources

• Easy optional feature support
(e.g. body tracking)

• Allows hardware manufacturers a pool of
existing content to use with their new devices

XrAction: “Teleport”

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

ControllerCorp

Copyright ©2018 The Khronos™ Group Inc. - Page 30

Input and Haptics
XrActions are created with the following information:
• Action Name: A name to reference the action by (e.g. “Teleport”)
• Localized Name: A human-readable description of the action,

 localized to the system’s current locale
• Action Set: The logical grouping of actions this action belongs to (NULL for global)
• Suggested Binding: Optional, but suggests which bindings for known devices

 the application developer recommends
• Action Type:

Suggested Binding Restrictions

XR_INPUT_ACTION_TYPE_BOOLEAN
If path is a scalar value, a threshold must be applied. If not a value, needs to be bound to
…/click

XR_INPUT_ACTION_TYPE_VECTOR1F
If path is a scalar value, then input is directly bound. If the bound value is boolean, the runtime
must supply a 0.0 or 1.0 as the conversion

XR_INPUT_ACTION_TYPE_VECTOR2F Path must refer to parent with child values …/x and …/y

XR_INPUT_ACTION_TYPE_VECTOR3F Path must refer to parent with child values …/x, …/y, and …/z

Copyright ©2018 The Khronos™ Group Inc. - Page 31

Input and Haptics
There is another type of XrInputAction, XR_TYPE_ACTION_STATE_POSE, which
allows for adding new tracked devices into the scene

xrGetActionStatePose allows the application to get the
following information in the specified XrSpace:

- Pose (position and orientation)
- Linear Velocity (m/s^2)
- Angular Velocity
- Linear Acceleration
- Angular Acceleration

For some devices, not all data is available
Validity can be checked using XrTrackerPoseFlags

Copyright ©2018 The Khronos™ Group Inc. - Page 32

Input and Haptics
XrActions can be grouped into XrActionSets to reflect different input modalities
within the application

For example, in Kitten Petter VR, you might be in kitty petting mode, or in UI mode,
and have different input actions for each:

The application can then swap between which XrActionSet (or Sets) when it syncs
action state in xrSyncActionData

XrActionSet: Kitten_Petting

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click SpawnYarnBall

…

XrActionSet: UI_Mode

.../input/trigger/click ChangeMenu

.../input/trackpad/delta_y ScrollMenu

.../input/button_a/click SelectItem

…

Copyright ©2018 The Khronos™ Group Inc. - Page 33

Input and Haptics

We can also flip things, and figure out what device input that a particular XrAction
is bound to

This is useful for prompts like “Activate the Trigger to Teleport!”

Activate the Trigger to Teleport!

OpenXR Runtime

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

.../input/button_a/click Explode

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

…

Copyright ©2018 The Khronos™ Group Inc. - Page 34

Input and Haptics
Haptics build upon the same XrAction system, and have their own Action Type:
XR_HAPTIC_VIBRATION. Just like other XrActions, they can be used with
XrActionSets, but unlike inputs, they are activated with xrApplyHapticFeedback

Currently, only XrHapticVibration is supported:
• Start Time
• Duration (s)
• Frequency (Hz)
• Amplitude (0.0 – 1.0)

We expect that many more haptic types will be added through extensions
as the technology develops

Copyright ©2018 The Khronos™ Group Inc. - Page 35

Frame Timing
Let’s examine frame timing first in the simplest
case of a single-threaded render loop

xrBeginFrame:
Signals that we’re ready to begin rendering pixels to
the active image in our swap chain

xrEndFrame:
We’re finished rendering, and now are ready to hand
off the compositor for presentation. Takes a
predicted display time, and layers to present

xrWaitFrame:
Called before we begin simulation of the next frame.
This is responsible for throttling

xrBeginFrame

xrEndFrame

xrWaitFrame

(make pretties)

Copyright ©2018 The Khronos™ Group Inc. - Page 36

Frame Timing
Digging into xrWaitFrame a bit more…

Blocks on two factors:
• Swap Interval, as requested as part of XrWaitFrameDescription, which is passed in

- Swap Interval = 1: xrWaitFrame returns when it determines the application
should start drawing for the next frame at the display’s native refresh cycle
- Swap Interval = 2: xrWaitFrame skips a refresh cycle before returning
- Swap Interval = 0: Invalid, would rip a hole in space and time

• Throttling of the application by the runtime, in order to try and align GPU work with
the compositor hook time

To see what this means, let’s take a look at a slightly more complex multi-threaded
engine example…

Copyright ©2018 The Khronos™ Group Inc. - Page 37

Frame Timing

Simulation Thread

Render Thread

GPU

Compositor Frame Hook
xrEndFrame

xrBeginFrame

xrWaitFrame

Frame 100 Frame 101 Frame 102 Frame 103

• Frame 100: Late, so we hold Frame 101 until xrBeginFrame
can kick off right after the Compositor Frame Hook

• Frame 101: Ideally scheduled. xrBeginFrame happens right
after Compositor Hook for the previous frame, and GPU work
finishes in time for the next Compositor Hook

Simple Multithreaded Example
(DX11, OpenGL)

Copyright ©2018 The Khronos™ Group Inc. - Page 38

xrWaitFrame

xrBeginFrame

Frame Timing

Compositor Frame Hook
xrEndFrame

Deeply Pipelined Multithreaded Example
(Unreal Engine 4 with Vulkan, DX12, Metal)

Simulation Thread

Render Thread

Render Workers

Frame 100 Frame 101 Frame 102 Frame 103

RHI Thread

Render Workers

GPU

Render Thread Fence

Copyright ©2018 The Khronos™ Group Inc. - Page 39

Swap Chains and Rendering

xrCreateSwapchain

xrDestroySwapchain

xrAcquireSwapchainImage

xrWaitSwapchainImage

xrReleaseSwapchainImage

xrGetSwapchainImages
Re

nd
er

 L
oo

p

…
…

(make pretties)

XrSwapchains:
XrSwapchains are limited by the
capabilities of the XrSession that
they are being created for, and can
be customized on creation based on
application needs

• Usage Flags
• Format
• Width
• Height
• Swap chain length

Copyright ©2018 The Khronos™ Group Inc. - Page 40

Compositor Layers
The Compositor is responsible for taking all the
Layers, reprojecting and distorting them, and
displaying them to the device

• Layers are aggregated by the Compositor in
xrEndFrame for display

• You can use multiple, up to the limit of the
runtime

• Have XrCompositionLayerData:
- Swap chain, and current index

- Type, display time, eye, and XrSpace

Compositor

Copyright ©2018 The Khronos™ Group Inc. - Page 41

Compositor Layers
XrCompositorLayerMultiProjection:
Most common type of Layer. This is the
classic “eye” layer, with each eye
represented by a standard perspective
projection matrix

XrCompositorLayerQuad:

Quad layers are common for UI elements, or
videos or images represented in the virtual
world on a quad in virtual world space

XR_EYE_LEFT XR_EYE_RIGHT

Copyright ©2018 The Khronos™ Group Inc. - Page 42

Viewport Configurations

Photo Credit: Dave Pape

Camera Passthrough AR Stereoscopic VR Projection CAVE

One Viewport Two Viewports (one per eye) Twelve Viewports (six per eye)

/viewport_configuration/ar_mono/magic_window /viewport_configuration/vr/hmd /viewport_configuration/vr_cube/cave_vr

Applications can:
• Query the active XrSystemId for its supported Viewport Configurations
• Applications can then set the Viewport Configurations that they plan to use
• Select/change aspects of their active configuration over the lifetime of the XrSession

Runtimes can:
• Request the application change configuration, but app is not required to comply

Copyright ©2018 The Khronos™ Group Inc. - Page 43

Viewport Projections

xrGetViewportProjections()

Display Time

Space

System

In
pu

ts

XrViewportProjectionInfo

Projections

Combined FoV

Flags (e.g. eyes tracked?)

XrViewportProjectionInfo

Gaze Direction

Projection Specification

View Transform

Eye

XrViewportProjectionInfo

Gaze Direction

Projection Specification

View Transform

Eye

…

Copyright ©2018 The Khronos™ Group Inc. - Page 44

Device Plugin
The Device device plugin
allows a standard API for
device manufacturers to
communicate with OpenXR
Runtimes.

Copyright ©2018 The Khronos™ Group Inc. - Page 45

Where Do We Go From Here?

Copyright ©2018 The Khronos™ Group Inc. - Page 46

A Brief History of the Standard
Call for Participation / Exploratory Group Formation -- Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation -- Winter F2F, January 2017: Vancouver

Specification Work -- Spring F2F, April 2017: Amsterdam

Specification Work -- Interim F2F, July 2017: Seattle

Defining the MVP -- Fall F2F, September 2017: Chicago

Resolving Implementation Blockers -- Winterim F2F, November 2017: Seattle

Raising Implementation Issues -- Winter F2F, January 2018: Taipei

First Public Information! -- GDC, March 2018: San Francisco

Provisional Release

Ratification and Release

Conformance Testing and Implementation

Present Day
Coming Soon

Implementation and Refinement -- Spring F2F, April 2018: Montreal

Implementation, Conformance and Refinement -- Fall F2F, September 2018

Updates & First Demonstration! -- SIGGRAPH, August 2018: Right Here, Right Now!

Copyright ©2018 The Khronos™ Group Inc. - Page 47

Demos
Dr. Nick Whiting is currently Technical Director the of the award-winning
Unreal Engine 4's virtual / augmented reality and machine learning efforts,
including shipping the recent "Robo Recall", “Bullet Train,” "Thief in the
Shadows," "Showdown," and "Couch Knights" VR titles. Previously, he has
helped shipped titles in the blockbuster "Gears of War" series, including
"Gears of War 3" and "Gears of War: Judgment." He is also currently serving
as the chair of the Khronos OpenXR initiative, working to create a standard
for VR and AR platforms and applications.

Copyright ©2018 The Khronos™ Group Inc. - Page 48

The Structure

Unreal Engine

OpenXR Application Layer

Windows Mixed Reality Runtime
(inside-out head tracking)

StarVR Runtime
(quad viewport / large FOV)

Samsung Odyssey HMD StarVR One HMD

Unreal Showdown Demo

Copyright ©2018 The Khronos™ Group Inc. - Page 49

Demos

Alex Turner is a Principal Program Manager at Microsoft, leading API design
for the world's first mixed reality development platform that spans both
holographic and immersive headsets! Before this, he was a PM on the
Managed Languages team, where he drove the C#/VB Compiler team to ship
Dynamic, Async and Windows 8, as well as Analyzers support as part of the
.NET Compiler Platform ("Roslyn") project. Alex graduated with an MS in
Computer Science from Stony Brook University and has spoken at GDC,
BUILD, PDC, TechEd, TechDays and MIX.

Dr. Rémi Arnaud serves as Chief Architect Officer at Starbreeze, leading
developments such as the StarVR SDK. Involved early on with real-time
image generation in Paris where he did his Ph.D., he then relocated to
California and since has worked on many projects including Silicon Graphics
IRIS Performer, Keyhole's Earth Viewer, Intrinsic Graphics' Alchemy, Sony's
PS3 SDK, Intel's Larrabee Game Engine, Screampoint's 5D City, Fl4re's game
engine. Collaborated to various Khronos groups including OpenGL ES,
COLLADA, glTF, webGL, webCL, and OpenXR.

Copyright ©2018 The Khronos™ Group Inc. - Page 50

Questions?

