KHRCONOS

GROUP

Standardizing All the Realities:
A Look at OpenXR

Kaye Mason
SIGGRAPH, August 2018

G R upep

NOS

KHRO

(Open\’\/\ R. A Note on What We’ll Cover

Copyright ©2018 The Khronos™ Group Inc. - Page

2

NOS

KHRO

A Note on What We'’ll Cover

e An Overview of the Spec
- Proviso: The OpenXR specification is a work in progress.
Things will change between now and the release of the specification
- Jan 2017 (52pp) :: March 2018 (268pp) :: Aug 2018 (291pp)
The spec has bugs. Known and Unknown.
- Talk assumes that you know:
- Something about AR & VR
- Nothing about the Specification Process.
- This talk will not cover the whole spec!

e Live Demos of OpenXR-backed VR Systems (Starbreeze and Microsoft)

o Ample time will be given for Questions at the end!
- The spec is long...there may be some questions we can’t answer.
- | can’t answer questions about systems that aren’t stabilized.
- | can’t tell you when the spec will be released.

Copyright ©2018 The Khronos™ Group Inc. - Page 3

G R upep

NOS

KHRO

(Open\’\/\ R. | A Brief History of the Standard

Copyright ©2018 The Khronos™ Group Inc. - Page 4

AMDQ\ crilatency arm O - Google hTC

GGGGG
COLLABORA

Y QO (inte) @LG logitech w5 (205"

HUAWEI imagination

LT0ET B® Microsoft fileyA/E] NIOKIA I_ETZDIA © oculus O Pico

2
PIUtO Quaomw S = 17 =k snmsune €D ., &9 tobii
& unity VALVE] vArao @siicon @yu,m O Space

Copyright ©2018 The Khronos™ Group Inc. - Page 5

™

NOS

KHR

A Brief History of the Standard

Present Day

Call for Participation / Exploratory Group Formation -- Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation -- Winter F2F, January 2017: Vancouver

Specification Work == Spring F2F, April 2017: Amsterdam

Specification Work == Interim F2F, July 2017: Seattle

Defining the MVP -- Fall F2F, September 2017: Chicago

Resolving Implementation Blockers == Winterim F2F, November 2017: Seattle

Raising Implementation Issues == Winter F2F, January 2018: Taipei

First Public Information! -- GDC, March 2018: San Francisco

Implementation and Refinement == Spring F2F, April 2018: Montreal

Coming Soon

Updates & First Demonstration! -- SIGGRAPH, August 2018: Right Here, Right Now!

Implementation, Conformance and Refinement == Fall F2F, September 2018

Provisional Release

Conformance Testing and Implementation

Ratification and Release

Copyright ©2018 The Khronos™ Group Inc. - Page 6

G R upep

NOS

KHRO

(Open\’\/\ R. | Goals and Philosophies

Copyright ©2018 The Khronos™ Group Inc. - Page

7

The Problem

Jeriteif
& unity
@ '

NOS

KHRO

'/.4,' 7,‘,\.‘ 7~} r\é oS N YY"
Daydream

SAMSUNG

Gear VR

DEVICE

DEVICE

o OCUIUS DEVICE

OSVR DEVICE
@ DEVICE
Steam'VR

DEVICE

o \\i
ER /Vindows

Copyright ©2018 The Khronos™ Group Inc. - Page 8

™

KHROS

NOS

The Solution

Portable VR & AR
Applications
& Engines
CURRENT DEVICE STATE:
Normalized Predicted Poses
Controller / Peripheral State openXR

Input Events Application Interface

VR & AR Vendor Runtime System

Distortion Correction and Display Output
Coordinate System Unification & Prediction

CURRENT DEVICE STATE: OpenXR Device Plugin
Controller / Peripheral State Extension
Raw Poses (Optional)

Device Vendor-Supplied
Device Drivers

Portable VR & AR
Devices

OUTGOING
REQUESTS:

Pre-distortion
image to display

Haptics

OUTGOING
REQUESTS:

Post-distortion
image to display

Haptics

Copyright ©2018 The Khronos™ Group Inc

. - Page 9

GROUP

KHRCONOS

OpenXR Philosophies

1

2
3
4

Enable both VR and AR applications

The OpenXR standard unified common VR and AR functionality to streamline
software and hardware development for a wide variety of products and platforms
Be future-proof

While OpenXR 1.0 is focused on enabling the current state-of-the-art, the standard is
built around a flexible architecture and extensibility to support rapid innovation in
the software and hardware spaces for years to come

Do not try to predict the future of XR technology

While trying to predict the future details of XR would be foolhardy, OpenXR uses
forward-looking APl desigh techniques to enable designers to easily harness new and
emerging technologies

Unify performance-critical concepts in XR application development

Developers can optimize to a single, predictable, universal target rather than add
application complexity to handle a variety of target platforms

Copyright ©2018 The Khronos™ Group Inc. - Page 10

NOS

KHRO

The Structure

Application

OpenXR Application Layer

Runtime A

Runtime B

OpenXR Device Plugin Extension

VR / AR Hardware

VR / AR VR / AR
Hardware Hardware

NOS

KHRO

Layered API

Application

OpenXR Application Layer

Runtime B

[eroSom?thing()
[Layerl: :xr'DZSomething()
[LayerN: :xr*DZSomething()
[MyRuntime: :XI)oSomething()

=

OpenXR Device Plugin Extension

VR / AR VR / AR
Hardware Hardware

Copyright ©2018 The Khronos™ Group Inc. - Page 12

G R upep

NOS

KHRO

(Open\’\,\ R. | Architecture Overview

Copyright ©2018 The Khronos™ Gr

oup Inc. - Page 13

uepep

NOS

KHRO

APl Conventions and Primitives

Handles

Objects which are allocated by the runtime on behalf of the application are
represented by handles

Handles are:
« Opaque identifiers to the underlying object

o Lifetime generally managed by xrCreate* and xrDestroy* functions
« Hierarchical

-E.g. To create an XrSession handle, you must pass in a parent XrInstance
- Handles for children are only valid within their direct parent’s scope

Copyright ©2018 The Khronos™ Group Inc. - Page 14

NOS

KHRO

APl Conventions and Primitives

Semantic Paths

Properties of XrPaths:
 Hierarchical

e Stored in a string table

 Human-readable

« Can be pre-defined (reserved) or user-defined
- Handles

e[a-2,0-9,-, ,.,/]

 Null terminated

 Not file paths!
- Can’t use ./ or ../ for pathing

Copyright ©2018 The Khronos™ Group Inc. - Page 15

NOS

KHRO

APl Conventions and Primitives

Semantic Paths
Some paths are reserved by the specification for special purposes:
/user/hand/left, user/hand/right
/user/hand/primary, user/hand/secondary
/user/head
/space/head
/space/hand/left/grip
/devices/<vendor name>/<unique identifier>
/devices/<vendor name>/<unique identifier>/<type>/<component>
where <type> is: thumbstick, trigger, system, etc.
and <component> is: click, touch, value, delta x, etc.

Copyright ©2018 The Khronos™ Group Inc. - Page 16

NOS

0

KHR

APl Conventions and Primitives

XrSpace

XrSpace is one of the fundamental concepts
used throughout the API to help with making a
generalized understanding of the physical
tracking environment.

« The Runtime can hold any representation it
wants internally.

e XrSpaces are independent coordinate systems
tracked by the runtime, which can be related
to one another, and used as a basis for
functions that return spatial values

o [n certain cases, such as motion controllers,
XrSpaces can be attached to tracked objects
for ease of reference

> g

A+y

/spaces/head

/spaces/hand/left/grip

p +X

Copyright ©2018 The Khronos™ Group Inc. - Page 17

NOS

KHROS

The Loader,

Loader:
» Not required

» Complexity can vary

» Some platforms
have strict
requirements (i.e.,
mobile)

Extensions and Layers

‘k)beﬁ§(2

Device Plugin

O XR.

Device Plugin

N
Open\’ R.

Loader

Coxr e

Runtime

Application

<3peRX$L
Runtime

OpenXR.
Application
'KDpéRXTL
Runtime

OpenXR.
Application

'k)péEX${
Layer

‘k)péﬁXT{
Layer

(k)peﬁ§ﬂqw
Layer

Copyright ©2018 The Khronos™ Group Inc. - Page 18

The Loader, Extensions and Layers

Loader:

» Loader Trampoline and Terminator Patterns

Open\’ :

Application

xrFunction

Open\’ ;
Application

xrFunction

Only If Present
@peXR. GpedXR. @pedXR.

Loader Layer A Layer B
Trampoline

xrFunction xrFunction xrFunction

GperXR. @peXR. xR,
Loader Layer A Layer B

Trampoline

xrFunction xrFunction xrFunction

Open\’ -

Runtime

Terminator

xrFunction

Copyright ©2018 The Khronos™ Group Inc. - Page 19

The Loader, Extensions and Layers

Loader:
» Loader Trampoline and Terminator Patterns

Open\’ ;

Application

xrFunction1
xrFunction2
xrFunction3
xrFunction4
xrFunction5

xrFunction6

Loader

Trampoline

xrFunction1
xrFunction2
xrFunction3
xrFunction4
xrFunction5

xrFunction6

Layer A

xrFunction2

xrFunction4

xrFunction6

Layer B

xrFunctioni

xrFunction?2

Loader

Terminator

xrFunctioni

xrFunction3

Copyright ©2018 The Khronos™ Group Inc. - Page 20

Runtime

xrFunction1
xrFunction2
xrFunction3
xrFunction4

xrFunction5

NOS

KHRO

Core and Extensions

Core Standard

KHR Extensions

EXT Extensions

Vendor Extensions

Core concepts that are fundamental to the
specification for all use cases
Examples: Instance management, tracking

Functionality that a large classes of runtimes
will likely implement

Examples: Platform support, Device Plugin, Headless,
Tracking Bounds, Vulkan Extensions

Functionality that a few runtimes
might implement
Examples: Performance Settings, Thermals, Debug Utils

Functionality that is limited to a
specific vendor
Examples: Device specific functionality

Copyright ©2018 The Khronos™ Group Inc. - Page 21

NOS

KHRO

Layers

We already saw how layers work with the loader. Some possible example layers:

Validation

Platform App Quality

Debug Panels

Push detailed validation of API usage into a
layer so it can be turned off in production.

Yes, OpenXR allows you to do that, but on our

platform, it’s not smart.
Examples: Specialized hardware.

Capture information and display it.
Examples: Frame rate, frame drops, latency

Copyright ©2018 The Khronos™ Group Inc. - Page 22

NOS

KHRO

Application Lifecycles

« Operating Systems can have very different application lifecycles.

« Here are two examples cases:

Android
(Launch)
OnCreate
OnStart
OnResume
(Running)
OnPause
OnStop

(Shut Down)

Windows 10
Not Running
(Activated)
Running In Foreground
(Leaving Foreground)
Running in Background
(Entering Foreground)
(Suspending)
Suspended

(Resuming)

Copyright ©2018 The Khronos™ Group Inc. - Page 23

NOS

KHRO

Lifecycles: the Instance and the Session

XrInstance:
 The XrInstance is basically the application’s representation of the OpenXR runtime

« Can create multiple XrInstances, if supported by the runtime

« xrCreateInstance specifies app info, layers, and extensions for the instance.

Application

XrCreateInstance

s

N

|

—xclreatesession—|

xrBeginSession

Loader

OpenXR Runtime A

KHR_Extension_1

KHR_Extension_3

» OpenXR Runtime B
|—> KHR_Extension 1

EXT_Extension_ 7

OpenXR Runtime C

Copyright ©2018 The Khronos™ Group Inc. - Page 24

(@)

R

NOS

KHRO

Lifecycles: the Instance and the Session

XrSession:

* XrSession represents an active interaction between the application and the runtime.
* XrSession can now have its own extensions.
e Swapchain management is done here.

OpenXR Runtime A

KHR_Extension_1

KHR_Extension_3

Application ,
atelns » Loader [I_: OpenXR Runtime B
xrCreateSession KHR_Extension_1
] w// EXT_Extension_ 7

OpenXR Runtime C

Copyright ©2018 The Khronos™ Group Inc. - Page 25

Lifecycles: the Instance and the Session

XrSession:;

« Beginning an XrSession is how an application indicates it wants to render stuff.
e Applications use this to tell the runtime what to render and how.

OpenXR Runtime A

KHR_Extension_1

KHR_Extension_3

Application /
ne xrCreateInstance » Loader [I_: OpenXR Runtime B
O:
o xrCreateSession KHR_Extension_1
ZO
xrBeginSession EXT_Extension_ 7
S~ -

OpenXR Runtime C

KHRO

Copyright ©2018 The Khronos™ Group Inc. - Page 26

Events

Events are messages sent from the runtime to the application. They’re put into a
queue by the runtime, and read from that queue by the application by xrPollEvent

Visibility Changed Whether or not the application is visible on the device
Focus Changed Whether or not the application is receiving input from the system
Request End Session Runtime wants the application to exit
Request End Instance Call xrDestroyInstance, because the runtime needs to update
Availability Changed Device attached or lost

E Engagement Changed Device is put on or taken off

NOS

KHRO

Copyright ©2018 The Khronos™ Group Inc. - Page 27

NOS

KHRO

Input and Haptics

Input in OpenXR goes through a layer of
abstraction built around Input Actions
(XrActions). These allow application
developers to define input based on resulting
action (e.g. “Move,” “Jump,” “Teleport™)
rather than explicitly binding controls

While the application can suggest
recommended bindings, it is ultimately up to
the runtime to bind input sources to actions as
it sees fit (application’s recommendation, user
settings, etc.)

‘
“2ntrollercor

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/

input/trigger/click)

~_~

4 OpenXR Runtime

.../input/button_a/click

Explode

.../input/trigger/click

Teleport

.../input/grip/value

SpawnKittens

-

iy

XrAction: “Teleport”

>

Copyright ©2018 The Khronos™ Group Inc. - Page 28

NOS

KHRO

Input and Haptics

Forcing applications through this indirection has
several advantages:

 Greater future-proofing as improvements to
hardware and runtimes come out
“Dev teams are ephemeral,
platforms are forever”

e Allows for runtimes to “mix-and-match”
multiple input sources

« Easy optional feature support
(e.g. body tracking)

 Allows hardware manufacturers a pool of
existing content to use with their new devices

/user/hand/left/input/trigger/click
(/devices/ControllerCorp/fancy_controller/
input/trigger/click)

~_~

-

OpenXR Runtime N

.../input/button_a/click Explode

.../input/trigger/click Teleport

.../input/grip/value SpawnKittens

-

iy

XrAction: “Teleport”

>

Copyright ©2018 The Khronos™ Group Inc. - Page 29

NOS

KHRO

Input and Haptics

XrActions are created with the following information:

o Action Name: A name to reference the action by (e.g. “Teleport”)

e Localized Name: A human-readable description of the action,
localized to the system’s current locale

e Action Set: The logical grouping of actions this action belongs to (NULL for global)

» Suggested Binding: Optional, but suggests which bindings for known devices
the application developer recommends

e Action Type:

Suggested Binding Restrictions

XR_INPUT_ACTION_TYPE_BOOLEAN

If path is a scalar value, a threshold must be applied. If not a value, needs to be bound to
.../click

XR_INPUT_ACTION_TYPE_VECTOR1F

If path is a scalar value, then input is directly bound. If the bound value is boolean, the runtime
must supply a 0.0 or 1.0 as the conversion

XR_INPUT_ACTION_TYPE_VECTOR2F

Path must refer to parent with child values .../x and .../y

XR_INPUT_ACTION_TYPE_VECTOR3F

Path must refer to parent with child values .../x, .../y, and .../z

Copyright ©2018 The Khronos™ Group Inc. - Page 30

NOS

KHRO

Input and Haptics

There is another type of XrInputAction, XR_TYPE_ACTION_ STATE POSE, which

allows for adding new tracked devices into the scene

xrGetActionStatePose allows the application to get the
following information in the specified XrSpace:

- Pose (position and orientation)

- Linear Velocity (m/s"2)

- Angular Velocity

- Linear Acceleration

- Angular Acceleration

For some devices, not all data is available
Validity can be checked using XrTrackerPoseFlags

Copyright ©2018 The Khronos™ Group Inc. - Page 31

=

F

N
=)

O:
ZL’)

Input and Haptics

XrActions can be grouped into XrActionSets to reflect different input modalities

within the application

For example, in Kitten Petter VR, you might be in kitty petting mode, or in Ul mode,

and have different input actions for each:

4 XrActionSet: Kitten_Petting

~

.../input/button_a/click

SpawnYarnBall

-

XrActionSet: Ul_Mode

~

.../input/trigger/click

Teleport

.../input/button_a/click

SelectItem

.../input/grip/value

SpawnKittens

.../input/trigger/click

ChangeMenu

\

)

.../input/trackpad/delta_y

ScrollMenu

\

)

O The application can then swap between which XrActionSet (or Sets) when it syncs

:I:
z

action state in xrSyncActionData

Copyright ©2018 The Khronos™ Group Inc. -

Page 32

Input and Haptics

We can also flip things, and figure out what device input that a particular XrAction
is bound to

This is useful for prompts like “Activate the Trigger to Teleport!”

/user/hand/left/input/trigger/click
Activate the Trigger to Teleport! (/devices/ControllerCorp/fancy_controller/
input/trigger/click)
e 5
O o
5 4 OpenXR Runtime)
Z .../input/button_a/click Explode
L .../input/trigger/click Teleport
.../input/grip/value SpawnKittens
\ :)

KHRO

Copyright ©2018 The Khronos™ Group Inc. - Page 33

NOS

KHRO

Input and Haptics

Haptics build upon the same XrAction system, and have their own Action Type:
XR_HAPTIC VIBRATION. Just like other XrActions, they can be used with
XrActionSets, but unlike inputs, they are activated with xrApplyHapticFeedback

Currently, only XrHapticVibration is supported:
e Start Time

 Duration (s)

e Frequency (Hz)

« Amplitude (0.0 - 1.0)

We expect that many more haptic types will be added through extensions
as the technology develops

Copyright ©2018 The Khronos™ Group Inc. - Page 34

(@)

R

NOS

KHRO

Frame Timing

Let’s examine frame timing first in the simplest
case of a single-threaded render loop

xrBeginFrame:

Signals that we’re ready to begin rendering pixels to
the active image in our swap chain

> xrBeginFrame

!

(make pretties)

!

XrEndFrame:

We’re finished rendering, and now are ready to hand
off the compositor for presentation. Takes a

predicted display time, and layers to present xrendFrame
xriWaitFrame: i
Called before we begin simulation of the next frame. "] xriWaitFrame

This is responsible for throttling

Copyright ©2018 The Khronos™ Group Inc. - Page 35

NOS

KHRO

Frame Timing
Digging into xrWaitFrame a bit more...

Blocks on two factors:

« Swap Interval, as requested as part of XrWaitFrameDescription, which is passed in
- Swap Interval = 1: xrWaitFrame returns when it determines the application
should start drawing for the next frame at the display’s native refresh cycle
- Swap Interval = 2: xrWaitFrame skips a refresh cycle before returning

- Swap Interval = 0: Invalid, would rip a hole in space and time

 Throttling of the application by the runtime, in order to try and align GPU work with
the compositor hook time

To see what this means, let’s take a look at a slightly more complex multi-threaded
engine example...

Copyright ©2018 The Khronos™ Group Inc. - Page 36

Frame Timing Simple Multithreaded Example

(DX11, OpenGL)

Frame 100 Frame 101 Frame 102 Frame 103
I |
Simulation Thread \ | [\ [) |
I
Render Thread [& § [& § &
GPU [] l]
- xrWaitFrame Frame 100: Late, so we hold Frame 101 until xrBeginFrame
Oo . can kick off right after the Compositor Frame Hook
o ¢ xrBeginFrame
Z xrEndFrame

Frame 101: Ideally scheduled. xrBeginFrame happens right
Compositor Frame Hook after Compositor Hook for the previous frame, and GPU work
finishes in time for the next Compositor Hook

KHRO
4

Copyright ©2018 The Khronos™ Group Inc. - Page 37

[a% xrWaitFrame
T ¢ xrBeginFrame ¢
2

Frame Timing Deeply Pipelined Multithreaded Example

Simulation Thread

Render Thread

Render Workers

RHI Thread

Render Workers

GPU

(Unreal Engine 4 with Vulkan, DX12, Metal)

Frame 100 Frame 101 @ Frame 102 Frame 103
) .- o
| , ,]
e o¢ D¢ 4
o O 0o Ot O O |
O O . O g |-, O O
O) -, O) o, -0 O
8 O 0 O s, O O
Q E2 LR 3
) O3) | CJ| C
) CJ [O CJ] C
) O)) O (
) OJ | 3 g
[J | J |
L L L 2

XrEndFrame

I
Render Thread Fence
Compositor Frame Hook !

Copyright ©2018 The Khronos™ Group Inc. - Page 38

NOS

KHRO

Swap Chains and Rendering

xrCreateSwapchain

xrGetSwapchainImages

xrAcquireSwapchainImage
o xriWaitSwapchainImage
o
o o
- []
— []
w L3
I (make pretties)
& .
([J
([J
xrReleaseSwapchainImage
xrDestroySwapchain

XrSwapchains:

XrSwapchains are limited by the
capabilities of the XrSession that
they are being created for, and can
be customized on creation based on
application needs

» Usage Flags
 Format

« Width

* Height

» Swap chain length

G

NOS

KHRO

Compositor Layers

The Compositor is responsible for taking all the
Layers, reprojecting and distorting them, and
displaying them to the device

 Layers are aggregated by the Compositor in
xrEndFrame for display

e You can use multiple, up to the limit of the
runtime

» Have XrCompositionLayerData:
- Swap chain, and current index

- Type, display time, eye, and XrSpace

Copyright ©2018 The Khronos™ Group Inc. - Page 40

Compositor Layers

XrCompositorLayerMultiProjection: XrCompositorLayerQuad:

Most common type of Layer. This is the Quad layers are common for Ul elements, or
classic “eye” layer, with each eye videos or images represented in the virtual
represented by a standard perspective world on a quad in virtual world space

projection matrix

XR_EYE_LEFT

4 g4 A %
VYN 2
L LiL 9 el
. a 4
A ey
.)
2 & 7
= |
\

Copyright ©2018 The Khronos™ Group Inc. - Page 41

Viewport Configurations

Camera Passthrough AR Stereoscopic VR Projection CAVE

~ Photo Créd}f:-[;ave Pape

One Viewport Two Viewports (one per eye) Twelve Viewports (six per eye)

© Applications can:
O * Query the active XrSystemId for its supported Viewport Configurations
(a4
-
e

Oo /viewport_configuration/ar_mono/magic_window /viewport_configuration/vr/hmd /viewport_configuration/vr_cube/cave_vr

» Applications can then set the Viewport Configurations that they plan to use
» Select/change aspects of their active configuration over the lifetime of the XrSession

Runtimes can:
* Request the application change configuration, but app is not required to comply

Copyright ©2018 The Khronos™ Group Inc. - Page 42

NOS

KHRO

Viewport Projections

xrGetViewportProjections()

System

Display Time

Inputs

Space

a XrViewportProjectionInfo

~

Flags (e.g. eyes tracked?)

f XrViewportProjectionInfo

View Transform

Projection Specification

Gaze Direction

Eye

\

/ XrViewportProjectionInfo

AN

View Transform

Combined FoV

Projection Specification

Projections

Gaze Direction

Eye

™

NOS

KHR

Device Plugin

Runtime

The Device device plugin

Driver

Device
Layer

allows a standard API for

xrDevicePluginConnectKHR

Connect

device manufacturers to

instance
devicePlugininfo

communicate with OpenXR

devicePlugin

Runtimes.

xrDevicePluginCreateDeviceKHR

devicePlugin
systeminfo

devicePluginSystem

Fetch New Data

xrDevicePluginSetTrackingStatusKkHR

devicePluginSystem
deviceSemanticPath
trackingStatus

No Response

xrDevicePluginSetDeviceStatusKHR

deviceSemanticPath
XR_DEVICE_PLUGIN_TRACKING_STATE_LOST

1
1
1
1
1
;
1
1
1
:
1
1
]
1
1
1
1
1
:.
;
1
1
1
:
]
1
1
1
1
1
:
-
i
1
-
;
1
1
:
]
l.
:
:
]
:
]
!

Copyright ©2018 The Khronos™ Group Inc. - Page 44

G R upep

NOS

KHRO

(Open\’\,\ R. | Where Do We Go From Here?

Copyright ©2018 The Khronos™ Gr

oup Inc. - Page 45

™

NOS

KHRO

A Brief History of the Standard

Present Day

Call for Participation / Exploratory Group Formation -- Fall F2F, October 2016: Korea

Statement of Work / Working Group Formation -- Winter F2F, January 2017: Vancouver

Specification Work == Spring F2F, April 2017: Amsterdam

Specification Work == Interim F2F, July 2017: Seattle

Defining the MVP -- Fall F2F, September 2017: Chicago

Resolving Implementation Blockers == Winterim F2F, November 2017: Seattle

Raising Implementation Issues == Winter F2F, January 2018: Taipei

First Public Information! -- GDC, March 2018: San Francisco

Implementation and Refinement == Spring F2F, April 2018: Montreal

Coming Soon

Updates & First Demonstration! -- SIGGRAPH, August 2018: Right Here, Right Now!

Implementation, Conformance and Refinement -- Fall F2F, September 2018

Provisional Release

Conformance Testing and Implementation

Ratification and Release

Dr. Nick Whiting is currently Technical Director the of the award-winning
Unreal Engine 4's virtual / augmented reality and machine learning efforts,
including shipping the recent "Robo Recall”, “Bullet Train,” "Thief in the
Shadows,” "Showdown," and "Couch Knights" VR titles. Previously, he has
helped shipped titles in the blockbuster "Gears of War" series, including
"Gears of War 3" and "Gears of War: Judgment.” He is also currently serving
as the chair of the Khronos OpenXR initiative, working to create a standard
for VR and AR platforms and applications.

Copyright ©2018 The Khronos™ Group Inc. - Page 47

NOS

KHRO

The Structure

Unreal Showdown Demo

Unreal Engine

OpenXR Application Layer

Windows Mixed Reality Runtime StarVR Runtime
(inside-out head tracking) (quad viewport / large FOV)
Samsung Odyssey HMD StarVR One HMD

Dr. Rémi Arnaud serves as Chief Architect Officer at Starbreeze, leading
developments such as the StarVR SDK. Involved early on with real-time
image generation in Paris where he did his Ph.D., he then relocated to
California and since has worked on many projects including Silicon Graphics
IRIS Performer, Keyhole's Earth Viewer, Intrinsic Graphics' Alchemy, Sony's
PS3 SDK, Intel's Larrabee Game Engine, Screampoint’s 5D City, Fl4re's game
engine. Collaborated to various Khronos groups including OpenGL ES,
COLLADA, glTF, webGL, webCL, and OpenXR.

Alex Turner is a Principal Program Manager at Microsoft, leading APl design
for the world's first mixed reality development platform that spans both
holographic and immersive headsets! Before this, he was a PM on the
Managed Languages team, where he drove the C#/VB Compiler team to ship
Dynamic, Async and Windows 8, as well as Analyzers support as part of the
.NET Compiler Platform ("Roslyn”) project. Alex graduated with an MS in
Computer Science from Stony Brook University and has spoken at GDC,
BUILD, PDC, TechEd, TechDays and MIX.

Copyright ©2018 The Khronos™ Group Inc. - Page 49

KHRONOS

(Open\’\,\ R. Questions?

