KHRCONOS

GROUP

Vulkan: Mark My DWORDS

Hai Nguyen / Google
Vancouver, August 2018



KHROS

NOS

Agenda

e Overview

« Getting Started

« Marking Buffers

« Viewing Markers

e How Is This Useful?

e Practical Concerns

e Practical Experience
e Turning It Up to 11

* We’re Hiring

Copyright ©2018 The Khronos™ Group Inc. - Page

2



Overview

FADE IN:

INT. PROGRAMMER OFFICE - DESK - DAY,NIGHT (HARD TO TELL - IT’S PROGRAMMING)

Programmer sits at desk typing away furiously. Programmer hits compile. Compile is
successful. Programmer hits run.

CUT TO MONITOR DURING PROGRAM STARTUP

Splash screen good. Level loads. First frame renders.

CUT TO WASD + MOUSE INPUT
Programmer starts to test.

CUT BACK TO MONITOR AT PROGRAM CRASH

Debugger has asserted at vkQueueSubmit. Return code is VK ERROR DEVICE LOST.
, _ _ _

N

oo WIDE TO BEHIND PROGRAMMER

o

ZL’}

Programmer raises arms in the air with clenched fist.

PROGRAMMER
/ What the DWORD just happened? What crashed on the GPU?
‘== Which command buffer was it?! Can’t you just tell me,

something?! Anything?! (SOFT SOBBING SOUNDS)

- -
4

Copyright ©2018 The Khronos™ Group Inc. - Page 3



™

KHROS

NOS

Overview

e Show how to use VK_AMD_buffer_marker to track command buffer
progress to bubble possible source of crashes for debugging

- Possible general version of extensions available in the future

« Supplies you’ll need for trying this at home
- AMD GPU with Vulkan driver support for VK_AMD_buffer_marker

- Note: | haven’t tested any of this on RADV. Don’t think the extension is available
there.

Copyright ©2018 The Khronos™ Group Inc. - Page 4



™

KHROS

NOS

Overview

e Text in this presentation is slightly color coded

- I’'m doing this to distract you because | don’t have any fancy pictures :(

- Hypothetical audience questions are quoted in italic purple
- “Are you serious?”
- Yes

« Code is syntax highlighted for easier reading

std::cout << “Hello, Khronos BoF!” << std::endl;

 Some of the Vulkan constants are shortened
- Because they’re really really long

Copyright ©2018 The Khronos™ Group Inc. - Page 5



Getting Started

e “Do | need any extensions?”
- Yes: VK_AMD_buffer_marker
- It’s a VkDevice extension

e “What’s structs come with VK_AMD_buffer_marker?”
- None

e “What functions come with VK_AMD_buffer_marker?”
- vkCmdWriteBufferMarkerAMD

8: e “What are the requirements of the VkBuffer object?”
Z

© - No specific memory restrictions
O - Can simply be a HOST_VISIBLE buffer
(a4
- -
N

Copyright ©2018 The Khronos™ Group Inc. - Page 6



Marking Buffers

e The One Function:

void vkCmdWriteBufferMarker AMD(

/* The command buffer into which the command will be recorded */
VkCommandBuffer commandBuffer,

/* The pipeline stage whose completion triggers the marker write */
VKkPipelineStageFlagBits pipelineStage,

/* The buffer where the marker will be written to */
VkBuffer dstBuffer,

[* The byte offset into the buffer where the marker will be written to */
VkDeviceSize dstOffset,

/* The 32-bit value of the marker, AKA the DWORD! */
uint32_t marker

Copyright ©2018 The Khronos™ Group Inc. - Page 7



™

NOS

KHROS

Marking Buffers

e “Wait, where does this ‘marking the buffer’ happen?”

e From the spec

“The command [vkCmdWriteBufferMarkerAMD] will write the 32-bit marker

value into the buffer only after all preceding commands have finished executing
up to at least the specified pipeline stage.”

« What this means

- vkCmdWriteBufferMarkerAMD must be placed after the command
(e.g. vkCmdDraw, vkCmdDrawlIndexed, etc.)

- If the pipelineStage is VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT
it will write the specified marker value after this stage is done
executing

- If something happens before or during pipelineStage, then no writes
occur

Copyright ©2018 The Khronos™ Group Inc. - Page 8



P
O:
Z

o

KHROS

Marking Buffers

e The One Function:

VkDeviceSize offset = 0;

// Draw 1

vkCmdDraw(...);

vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, buf, offset, 1);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT_SHADER, buf, offset + 4, 2);
// Draw 2

vkCmdDraw(...);

vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, buf, offset + 8, 3);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT_SHADER, buf, offset + 12, 4);
/l Draw 3

vkCmdDraw(...);

vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, buf, offset + 16, 5);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT_SHADER, buf, offset + 20, 6);

Contents of buf

Byte Offset Value
0 1
4 2
8 3
12 4
16 5
20 6

Copyright ©2018 The Khronos™ Group Inc. - Page 9




NOS

KHROS

Viewing Markers

o If you have a host visible marker buffer:

for (uint32_t i = 0; i < marker_count; ++i) {
uint32_t offset =4 *i;
uint32_t value = *(mapped_address + offset);
std::cout << “Marker “ <<i << “: “ << value << “\n”;

}
 Host visible marker buffers can be viewed at anytime

e Practically speaking, VK_ERROR_DEVICE_LOST is the best time to
dump marker buffers

- E.g. Dump marker buffer to console when vkQueueSubmit returns
VK_ERROR_DEVICE_LOST

Copyright ©2018 The Khronos™ Group Inc. - Page 10



Useful How?

« “Cool, so | can get the GPU to write a DWORD from the command

buffer as it’s finishing up executing things...how exactly is this
useful?”

NOS

KHROS

Copyright ©2018 The Khronos™ Group Inc. - Page 11



™

NOS

KHROS

How Is This Useful?

« Tracking shader crashes

/I Zero out marker buffer
SetBufferMarkerToZero(bufN);

/l Record Command buffer

VkDeviceSize offset = 0;

// Bind pipelinel and draw

vkCmdDraw(...);

vkCmdBindGraphics(cmd, GRAPHICS, pipelinel);
vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, bufN, offset, 1);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT _SHADER, bufN, offset + 4, 2);
/ Bind pipeline2 and draw

vkCmdBindGraphics(cmd, GRAPHICS, pipeline2);

vkCmdDraw(...);

vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, bufN, offset + 8, 3);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT_SHADER, bufN, offset + 12, 4);
/ Bind pipeline3 and draw

vkCmdBindGraphics(cmd, GRAPHICS, pipeline3);

vkCmdDraw(...);

vkCmdWriteBufferMarkerAMD(cmd,VERTEX_SHADER, bufN, offset + 16, 5);
vkCmdWriteBufferMarkerAMD(cmd,FRAGMENT_SHADER, bufN, offset + 20, 6);

Contents of bufN

Byte Offset Value
0 0
4 0
8 0
12 0
16 0
20 0

Copyright ©2018 The Khronos™ Group Inc. - Page 12



How Is This Useful?

e Tracking shader crashes
- Command buffer for frame N record and submitted
- Move onto frame N+1
- Command buffer for frame N+1 record and submitted...
- vkQueueSubmit returns VK_ERROR_DEVICE_LOST

- Dump marker buffer bufN
- Only first 3 entries are populated
- Something happened in pipeline2’s fragment shader

Contents of bufN

Byte Offset Value
0 1
4 2
8 3
12 0
16 0
20 0

Copyright ©2018 The Khronos™ Group Inc. - Page 13



How Is This Useful?

e In real world scenarios..
- Possibly hundreds or thousands of pipelines and shader permutations
- Possibly 10, 20, or even 100 command buffers in flight at once
- Crash can happen on random a frame
- Crash can happen at random places in a level or scene
- If the crash is coming from a shader, this is where VK_AMD_buffer_marker helps

« Marker values

- Encoding scheme for marker values

- For example if you want to track shader stage progress:
uint32_t value = 10*commandNumber + VK_SHADER_STAGE_* BIT,;

- Start/End marker values
- Makes things easier when looking for incomplete command buffers

Copyright ©2018 The Khronos™ Group Inc. - Page 14



Practical Concerns

 Pairing Command Buffer and Marker Buffer

- 1:1 pairing of marker buffers to in-use command buffers

- Avoid having in-use command buffers share same marker buffer
- Gets really confusing fast

e Allocation Limits

- Suballocate memory for buffers to avoid running into device allocation limits
- Most drivers for AMD GPUs impose a 4096 allocation count limit

e Performance
- Slight overhead in writing to marker buffer
« Zeroing out buffer
- Consider zeroing out marker buffer as opposed to just overwriting

Copyright ©2018 The Khronos™ Group Inc. - Page 15



Practical Concerns
« VK_AMD_buffer_marker is handy for tracking down crashy shaders

Not a magic bullet

Developer still required to debug crashy shaders

Makes locating crash source easier

Reduces the need to comment out code until crashing stops

o Caveats

- VK_ERROR_DEVICE_LOST is the most useful error to stop on
- Other error messages may produce mixed results
- Marker buffers may be all zeros or fully written

- Very least tells you which command buffers completed before error
- Limited to AMD GPUs

Copyright ©2018 The Khronos™ Group Inc. - Page 16



Practical Experience

« Working on a Vulkan demo

Next version of a “Fish Tornado” style demo

Had a random crash that couldn’t easily pin down
Added VK_AMD_buffer_marker to renderer

- Took about ~2 hours, ran into allocation limits, implemented suballocation
Found source of crash about 10 minutes later

- Shader in global illumination lighting pass

- TL;DR; bad offsets in constant buffer caused a chain of bad accesses
« Overhead of buffer marking

- Cost was about ~3fps

- Totally forgot it was running after fixing issue

Copyright ©2018 The Khronos™ Group Inc. - Page 17



Turning It Up to 11

e Instead of embedding in app...write a layer
- VK_AMD_buffer_marker + Layer Factory
- Use this layer with any of your Vulkan applications

« Combine with SPIR-V reflection for even more info
- If SPIR-V is built with debug info, print out the shader source file name
- Requires bookkeeping to track pipelines and shader modules

« Combine with VK_AMD_shader_info for GCN

wn: - Save GCN during pipeline creation
02 - Print to file or console when VK_ERROR_DEVICE_LOST occurs
ZL’J

- Also requires additional bookkeeping

Copyright ©2018 The Khronos™ Group Inc. - Page 18



KHRONOS

We're Hiring!

Contact Kevin Lusby

(kevinlusby@google.com)!

Come visit us at the Google booth!



