Next generation Engine
design

Aka, why did we build these next gen
APIs in the first place?

Dan Baker, Graphics Architect, Oxide Games

What’s so hard about next gen APIS?

* The Myth: “Next generation APIls are hard, older APIs are easier”

* The reality: “Multi-core, asynchronous programming is hard. Old APIs
make it harder or impossible, new APls make it doable.”

* To do: Learn multicore, asynchronous programming techniques
* Don’t if it all possible: retro-fit old scalar code with next gen API
* Need to think about how the entire engine should work

Scene
Gameloop Al Physics Network Managem
ent

Rendering

GPU Stuff

re-REQUISITE Motivational SLIDE

Network

Physics

Effects

File 10 &
Asset
loading

Scene Mgt

GPU
Command

Legend

Yellow boxes — CPU clusters
Green Boxes — GPU clusters
Arrows — Message or Command
channels

All major systems in Nitrous
communicate asynchronously when
possible, each system could run on a
different physical computer, with
relatively high tolerance for latency

Task Group A Scheduler Multi Core Processor Thread Worker Pool

- - C O Hardware Hyper Thread 0 LO |Ca| Worker 0 A
- - ore Hardware Hyper Thread 1 Logical Worker 1 A

A

Message Channel A g

y
a

A

Hardware Hyper Thread 2 Loical Worker 2 A
Core 1 Hardware Hyper Thread 3 Logical Worker 3 A

A

Message Channel C

Hardware Hyper Thread 4 Logical Worker 4 A
Core 2 Hardware Hyper Thread 5 |_0 ICal Worker 5 A

-~

-~

-~

Hardware Hyper Thread 6 Logical Worker 0 B
Core 3 Hardware Hyper Thread 7 Logical Worker 1 B

Message Channel B e

-~

.' '. '

O |

N Thread Worker Poo

Task Group B Inactive Workers

Inactive Worker C
Inactive Worker C
Inactive Worker c

Graphics Cmd
Channel

GPU Scheduler

Graphics Cmd

GPU

Channel

!

Pre-REQUISITE Motivational SLIDE

IIIIIIII

_=oiNGAPORE AIRLINES, 8%

¢ Y.\ gL
e — —
Vb

Problems with previous gen APls
* Lots of little things add up

[Y N P e
]

Can’t RETRO fit old APIS

\1 1 LCiTww LW liITvwe LiTw UJYII\.— TTUuULtUl W VI JI W

* Lots of little things, memory model, binding model, etc

* Analysis of features like instancing indicate that it is
unreliable and tends to speed up only the fastest frames,
correlation between batches and driver perf is casual

Multi-core CPU Basics

Be Wary, There Is A Lot Of Very Bad Advice In The Wild

* Spawning threads to handle tasks
* Relying OS preemptive scheduler, heavy weight OS synchronization primitives
* Functional threading in general

Your Survival Guide

e OK: Multi-thread read of same location

e OK: Multi-thread write to different locations

e OK: Multi-thread write to same location in ‘stamp’ mode
* CAUTION: Atomic instructions

e STOP: Multi-thread read/write to same location

e STOP: Multi-thread write to same CACHE line

Task based system

* |dea is that work load is a constructed graph of much smaller nuggets

* Many advantages
e Scales well, 32+ cores
* Easy to balance workload

* More power efficient — more slower cores just as good
* Already seeing CPUs dynamically slowing clock speed

If enough similar work items queued, can execute same code on cores
e Cache hit rate much higher

* End up generating a larger number of command buffers to prevent thread
serialization

How Nitrous generates commands

Cmd
Buffer 2
Cmd Cmd Cmd Cmd Cmd
Buffer 0 Buffer 1 Buffer 2 Buffer 3 Buffer 0
Cmd
Buffer 1
Cmd
Buffer 3

Frame Data

Nitrous command formats

* In reality, diagram is over simplified

* Nitrous has it’s own internal command format
* Small, efficient commands
e Stateless, each command contains references to all needed state
* Inheritance unneeded
» Separates internal graphics system from any particular API

* Being Stateless, can be generated completely out of order

* Entire Frame is queued up in internal command format

* Frame is translated to GPU commands via Vulkan

* Gets more optimal use out of instruction cache and data cache

Building around Asyncronisity:

* Entire app should be exposed to concept of asyncronisity

* The concept of a frame:

* A set of commands which will be executed on the GPU
* A set of data which will be read by the GPU
* This concept is fundamental in Nitrous, regardless of API

Textures Big
Transfer
Buffers

Frame Data Resource Sets

Creating a Frame, using frame data

* Create 2 copies of our
frame data

* One will be read by GPU,

while other is being
written to by the CPU

e Must use fence to make

sure CPU doesn’t get
ahead

* More complex situations
could be explored

* Frame data includes

v

* Constant Data
* Small texture updates

Some extra stuff we will need

* Because we track hazards, we will want a few more buffers

* A delete queue — objects are not deleted, but placed in the delete queue
* One queue per frame, once that frame is complete, items will be
deleted
* A state transition queue
* Used only when a resource is created, to transition it to the desired
initial state
* An Unordered Command Queue
* Gets flushed before main frames command queue
» Useful for preparing resources for first time use (e.g. initialization)

Internal command format

* Nitrous has it’s own internal command format, ~20 different types of
commands

* Persistent state:
* Resource Sets
* Shader Blocks
* Various pipeline state

* Frame State, primary construct is a draw set
* Contains primitives, batches and shader sets
* Batches which reference
* Primitives
e Shader Sets
* Constant references are made into our frame memory

* Each one of these has a different, natural change frequency

Resource Sets

* In real world, textures are Space Fighter 1

grouped

(0) Albiedo
(1)Material Mask

* Nitrous has 5 bind points
2 for batch

e 7 for shader (2) Ambient Occlusion
1 for primitive (3) Normal Map
* VB is just a resource set (4) Weathering Map

* Nitrous does not allow binding of
individual textures

* Clearly, maps 1:1 to a descriptor

Vertex Buffers

* Nitrous does not use Vertex Buffers
* Instead, Resource Set acts as VB, but with more programmatic control

* Vastly simplifies engine side management
* VVBs can be saved as DDS files

* Do not require a huge amount of loading code for slightly different Vertex
Formats

* Can fold Displacement maps and other geometry modifiers into Primitive
Resource Set

* Not seen strong evidence on any hardware that this causes a
performance issue

Constant BUFFERS

* Nitrous does not have concept of constant buffers

* Instead, all constant data is thrown out every frame

 When we render an object, CPU will generate the constants needed for that
frame

* Grab a piece of the Frame Memory and write to it
* Constant bindings are just references into our frame memory

e But... be careful! CPU could be writing straight to GPU memory. Do
NOT read it back!

* Evidence suggests no performance advantage of persisting constants
across frames, regenerating every frame is ample fast. 100k+ batches

not a problem

Draw call in Nitrous consists of 4 parts

Primitive
Resources Shader
Tri info

Batch Set

Batch Set

Resources (2)

Constants (2)
Batches

Primitives

Shaders
RTs Constants (2)

Resources (2)

Blend State Shader Block

Descripor0 _________iWopescriptor1 !

*Batch Resource Set 0 *Primitive VB

*Batch Resource Set 1

Batch Constants 1

Batch Constants 2 Batch Constants O

*Shader Resource Set 0
*Shader Resource Set 1
Shader Constants O

Shader Constants 1

*UAV

*Samplers (only 1 global bank)

What our frame submission looks like

1)
2)
3)
4)

5)

Block on last frames present’s job (e.g. NOT the fence, the actual job we spawned)
Process and pending resource transitions from newly created resources
Generate all pending unordered commands, by generating into 1 or more cmd buffers

Send signals to the issuers of unordered commands, to notify them the commands are
submiitted

Begin translation of Nitrous cmds into Vulkan cmds — usually 100-500 jobs across all
cores

Flush the deletion queues for this frame (likely a few frames old at this point)

],cAny item in our master deletion queue, add to the now empty deletion queue for this
rame

Handle memory readbacks
Spawn Present job

Ashes of the Singularity

* Ashes of the Singularity: Escalation in Vulkan

Stardock

ENTERTAINMENT

Conclusion

* Vulkan is ready for primetime for desktop
* D3D11 to Vulkan is about the same complexity of D3D11 to D3D12

* For us, application/engine level makes no distinction between APIs
* Only base level graphics layer knows what APl is being used

* If moving from D3D11 to next gen APls, both could be supported
simultaneously without massive extra effort

