
Next generation Engine 
design

Aka, why did we build these next gen 

APIs in the first place?

Dan Baker, Graphics Architect, Oxide Games



What’s so hard about next gen APIS?

• The Myth: “Next generation APIs are hard, older APIs are easier”

• The reality: “Multi-core, asynchronous programming is hard. Old APIs 
make it harder or impossible, new APIs make it doable.”

• To do: Learn multicore, asynchronous programming techniques

• Don’t if it all possible: retro-fit old scalar code with next gen API

• Need to think about how the entire engine should work



Gameloop AI Physics Network UI
Scene 

Managem
ent

Rendering

Audio

GPU Stuff



Pre-REQUISITE Motivational SLIDE 



Network

Effects

Game 
Logic

File IO & 
Asset 

loading

Physics

GPU 2

GPU 1

GPU 
Command

UI AI

Scene Mgt Audio

Thread Scheduler
GPU Scheduler 

Message System

Legend
Yellow boxes – CPU clusters
Green Boxes – GPU clusters
Arrows – Message or Command 
channels

All major systems in Nitrous 
communicate asynchronously when 
possible, each system could run on a 
different physical computer, with 
relatively high tolerance for latency



Scheduler

Logic

Logic

Logic

Logic

Logic

Logic

Logic

Logic

Multi Core Processor

Core 0
Hardware Hyper Thread 0

Hardware Hyper Thread 1

Thread Worker Pool

Logical Worker 0 A
Logical Worker 1 A

Core 1
Hardware Hyper Thread 2

Hardware Hyper Thread 3

Logical Worker 2 A
Logical Worker 3 A

Core 2
Hardware Hyper Thread 4

Hardware Hyper Thread 5

Logical Worker 4 A
Logical Worker 5 A

Core 3
Hardware Hyper Thread 6

Hardware Hyper Thread 7

Logical Worker 0 B
Logical Worker 1 B

Thread Worker Pool
Inactive Workers

Inactive Worker C 
Inactive Worker C 
Inactive Worker c 

Message Channel A

Message Channel B

Message Channel C

Task Group A

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task

Task Group B

Task

Task

Task

Task

Task Task

GPU

GPU Scheduler

Command Queue

Command Queue

Graphics Cmd
Channel

Graphics Cmd
Channel



Pre-REQUISITE Motivational SLIDE 



Problems with previous gen APIs
• Lots of little things add up

• 2 major problems require rearchitecture
• Functional threading model throws a wrench into task 

based systems
• Implicit Hazard tracking and synchronization

• API tries to hide the async nature of GPU

• Lots of little things, memory model, binding model, etc

• Analysis of features like instancing indicate that it is 
unreliable and tends to speed up only the fastest frames, 
correlation between batches and driver perf is casual

Can’t RETRO fit old APIS 



Multi-core CPU Basics

Be Wary, There Is A Lot Of Very Bad Advice In The Wild
• Spawning threads to handle tasks

• Relying OS preemptive scheduler, heavy weight OS synchronization primitives 

• Functional threading in general

Your Survival Guide
• OK: Multi-thread read of same location

• OK: Multi-thread write to different locations

• OK: Multi-thread write to same location in ‘stamp’ mode

• CAUTION: Atomic instructions 

• STOP: Multi-thread read/write to same location

• STOP: Multi-thread write to same CACHE line



Task based system

• Idea is that work load is a constructed graph of much smaller nuggets

• Many advantages
• Scales well, 32+ cores

• Easy to balance workload

• More power efficient – more slower cores just as good
• Already seeing CPUs dynamically slowing clock speed 

• If enough similar work items queued, can execute same code on cores
• Cache hit rate much higher

• End up generating a larger number of command buffers to prevent thread 
serialization 



How Nitrous generates commands

Core 0 Core 1 Core 2

Cmd
Buffer 0

Cmd
Buffer 1

Cmd
Buffer 2

Cmd
Buffer 3

Frame Data

Cmd
Buffer 2 

Cmd
Buffer 0

Cmd
Buffer 1

Cmd
Buffer 3



Nitrous command formats

• In reality, diagram is over simplified

• Nitrous has it’s own internal command format
• Small, efficient commands
• Stateless, each command contains references to all needed state
• Inheritance unneeded
• Separates internal graphics system from any particular API

• Being Stateless, can be generated completely out of order

• Entire Frame is queued up in internal command format

• Frame is translated to GPU commands via Vulkan

• Gets more optimal use out of instruction cache and data cache



Building around Asyncronisity:
• Entire app should be exposed to concept of asyncronisity

• The concept of a frame:
• A set of commands which will be executed on the GPU

• A set of data which will be read by the GPU

• This concept is fundamental in Nitrous, regardless of API

Frame

CMD CMD CMD CMD

Frame Data

Persistent

Textures Big 
Transfer 
Buffers

Resource Sets



Creating a Frame, using frame data
• Create 2 copies of our 

frame data
• One will be read by GPU, 

while other is being 
written to by the CPU

• Must use fence to make 
sure CPU doesn’t get 
ahead

• More complex situations 
could be explored

• Frame data includes
• Constant Data
• Small texture updates

Even Frame 

Odd Frame 

GPU

CPU



Some extra stuff we will need

• Because we track hazards, we will want a few more buffers

• A delete queue – objects are not deleted, but placed in the delete queue
• One queue per frame, once that frame is complete, items will be 

deleted

• A state transition queue
• Used only when a resource is created, to transition it to the desired 

initial state

• An Unordered Command Queue
• Gets flushed before main frames command queue
• Useful for preparing resources for first time use (e.g. initialization)



Internal command format

• Nitrous has it’s own internal command format, ~20 different types of 
commands

• Persistent state:
• Resource Sets
• Shader Blocks
• Various pipeline state

• Frame State, primary construct is a draw set
• Contains primitives, batches and shader sets
• Batches which reference

• Primitives
• Shader Sets

• Constant references are made into our frame memory

• Each one of these has a different, natural change frequency



Resource Sets
• In real world, textures are 

grouped

• Nitrous has 5 bind points
• 2 for batch

• 2 for shader

• 1 for primitive

• VB is just a resource set

• Nitrous does not allow binding of 
individual textures

• Clearly, maps 1:1 to a descriptor 

Space Fighter 1

(0) Albiedo

(1)Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map



Vertex Buffers

• Nitrous does not use Vertex Buffers

• Instead, Resource Set acts as VB, but with more programmatic control

• Vastly simplifies engine side management
• VBs can be saved as DDS files

• Do not require a huge amount of loading code for slightly different Vertex 
Formats

• Can fold Displacement maps and other geometry modifiers into Primitive 
Resource Set

• Not seen strong evidence on any hardware that this causes a 
performance issue



Constant BUFFERs

• Nitrous does not have concept of constant buffers

• Instead, all constant data is thrown out every frame
• When we render an object, CPU will generate the constants needed for that 

frame
• Grab a piece of the Frame Memory and write to it

• Constant bindings are just references into our frame memory

• But… be careful! CPU could be writing straight to GPU memory. Do 
NOT read it back!

• Evidence suggests no performance advantage of persisting constants 
across frames, regenerating every frame is ample fast. 100k+ batches 
not a problem



Draw call in Nitrous consists of 4 parts

Batch Set

Prim 0 Prim 1 Prim 2

Shader 0 Shader 1

Batch 0 Batch 1 Batch 2 Batch 3 Batch 4

Primitive

IB

Resources

Tri info

Shader

Resources (2)

Constants (2)

Shader Block

Batch

Primitive

Shader

Resources (2)

Constants (2)
Batch Set

Batches

Primitives

Shaders

RTs

Blend State



Descriptor Table Layout for NitrousDescriptor 0

*Batch Resource Set 0

*Batch Resource Set 1

Batch Constants 1

Batch Constants 2

*Shader Resource Set 0

*Shader Resource Set 1

Shader Constants 0

Shader Constants 1

*UAV

*Samplers (only 1 global bank)

Descriptor 1

*Primitive VB

Dynamic Const

Batch Constants 0



What our frame submission looks like

1) Block on last frames present’s job (e.g. NOT the fence, the actual job we spawned)

2) Process and pending resource transitions from newly created resources

3) Generate all pending unordered commands, by generating into 1 or more cmd buffers

4) Send signals to the issuers of unordered commands, to notify them the commands are 
submiitted

5) Begin translation of Nitrous cmds into Vulkan cmds – usually 100-500 jobs across all 
cores

6) Flush the deletion queues for this frame (likely a few frames old at this point)

7) Any item in our master deletion queue, add to the now empty deletion queue for this 
frame

8) Handle memory readbacks

9) Spawn Present job



Ashes of the Singularity

• Ashes of the Singularity: Escalation in Vulkan



Conclusion

• Vulkan is ready for primetime for desktop

• D3D11 to Vulkan is about the same complexity of D3D11 to D3D12

• For us, application/engine level makes no distinction between APIs
• Only base level graphics layer knows what API is being used

• If moving from D3D11 to next gen APIs, both could be supported 
simultaneously without massive extra effort


