
© The Khronos® Group Inc. 2019 - Page 1

DXC Update:
HLSL to SPIR-V for Vulkan

Ehsan Nasiri, Google
SIGGRAPH, July 31, 2019

© The Khronos® Group Inc. 2019 - Page 2

Overview

• DXC: Background

• Feature Coverage

• Downloads and Docs

• What’s new

© The Khronos® Group Inc. 2019 - Page 3

DXC: Background

• DirectXShaderCompiler (DXC)
- Microsoft’s next-gen HLSL compiler
- Open sourced in January 2017
- Based on LLVM/Clang

• Spiregg: HLSL to SPIR-V compilation using DXC
- Google contributing SPIR-V CodeGen since April 2017
- Share front-end parsing, HLSL validation
- Recommended DXC for HLSL to SPIR-V compilation

© The Khronos® Group Inc. 2019 - Page 4

DXC: Background

HLSL

DXC

SPIR-V

Front-End
Parsing

...
HLSL

Validation
...

AST
DXIL backend

SPIR-V backend

DXIL

SPIR-V/
Metadata

• Assemble (spirv-as)
• Disassemble (spirv-dis)
• Optimize (spirv-opt)
• Validate (spirv-val)
• ...

SPIRV-Tools

© The Khronos® Group Inc. 2019 - Page 5

DXC: Goal

Make HLSL a first-class citizen for Vulkan

© The Khronos® Group Inc. 2019 - Page 6

DXC: Current Status
● ✔ Covers ~all native HLSL features

○ C-ish features
■ Math types, Control flows, Functions, enums, etc.

○ C++-ish features
■ Resource types and methods, Namespaces, structs, etc.

● ✔ Supports 16-bit and 32-bit types

© The Khronos® Group Inc. 2019 - Page 7

DXC: Current Status
● Supports Shader Model 6.2 and below

● Supports Vulkan 1.0 & 1.1

© The Khronos® Group Inc. 2019 - Page 8

DXC: Current Status
● Covers ~all Vulkan KHR/EXT extensions

○ Up to SPV_EXT_descriptor_indexing
○ SPV_EXT_physical_storage_buffer not yet supported

● Vendor extensions
○ Mainly up to the vendor to contribute
○ Code reviews, testing, documentation required
○ E.g. Supports NV RTX for Vulkan (Contribution by NVIDIA)

© The Khronos® Group Inc. 2019 - Page 9

DXC: Linux and macOS
● Windows specific techniques

○ Adapter code for non-Windows platforms (for COM, SAL, etc)

● Master branch fully supported Linux and macOS now!
○ Travis CI running for all commits and pull requests

https://travis-ci.org/microsoft/DirectXShaderCompiler

© The Khronos® Group Inc. 2019 - Page 10

Using DXC: Downloads and Docs
• Pre-built binaries (Windows)

- Rolling release build from latest master branch:
- http://khr.io/dxcappveyorbuild

• User manual
- How HLSL and Vulkan language features are translated:
- http://khr.io/hlsl2spirv

• How to build
- Windows
- Linux & macOS

http://khr.io/dxcappveyorbuild
http://khr.io/hlsl2spirv
https://github.com/microsoft/DirectXShaderCompiler/blob/master/README.md#building-sources
https://github.com/microsoft/DirectXShaderCompiler/blob/master/docs/DxcOnUnix.rst

© The Khronos® Group Inc. 2019 - Page 11

What’s New

© The Khronos® Group Inc. 2019 - Page 12

In-Memory Representation of SPIR-V
• Faithful representation for

- Instructions
- Basic blocks
- Functions
- Modules
- etc.

© The Khronos® Group Inc. 2019 - Page 13

IMR: SPIR-V Instructions

SpirvInstruction

SpirvConstantBoolean

SpirvConstantFloat

SpirvConstantInteger

SpirvConstantComposite

SpirvConstantNull

SpirvConstantSpirvTerminator

SpirvBranch SpirvKill...

SpirvUnaryOp

SpirvImageOp

SpirvLoad

...

SpirvBinaryOp

SpirvStore

• Leverage polymorphism for module traversals

• LLVM-style RTTI: llvm::isa<SpirvConstant>(ptr)

© The Khronos® Group Inc. 2019 - Page 14

SpirvInstruction

spv::Op opcode;
uint32_t resultId;
QualType astType;
SpirvType *spvType;
...
SourceLocation srcLoc;

IMR: SPIR-V Instructions

SpirvBinaryOp

SpirvInstruction *lhs;
SpirvInstruction *rhs;

SpirvAccessChain

SpirvInstruction *base;
vector<SpirvInstruction *> indices;

© The Khronos® Group Inc. 2019 - Page 15

SpirvBasicBlock

uint32_t labelId;
string labelName;
vector<SpirvBasicBlock *, 2> successors;
SpirvBasicBlock *mergeTarget;
SpirvBasicBlock *continueTarget;

// ...

vector<SpirvInstruction *> instructions;

IMR: SPIR-V Basic Block

© The Khronos® Group Inc. 2019 - Page 16

SpirvFunction

uint32_t functionId;
SpirvType *returnType;
SpirvType *functionType;
string functionName;
vector<SpirvFunctionParameter *, 8> parameters;
vector<SpirvVariable *> variables;

// ...

vector<SpirvBasicBlock *> basicBlocks;

IMR: SPIR-V Function

© The Khronos® Group Inc. 2019 - Page 17

SpirvModule

vector<SpirvCapability*> capabilities;
vector<SpirvExtension*> extensions;
vector<SpirvExtInstImport *> extInstSets;
SpirvMemoryModel *memoryModel;
vector<SpirvEntryPoint *> entryPoints;
vector<SpirvExecutionMode *> executionModes;
vector<SpirvModuleProcessed *> moduleProcesses;
vector<SpirvDecoration *> decorations;
vector<SpirvConstant *> constants;
vector<SpirvVariable *> variables;

// ...

vector<SpirvFunction *> functions;

IMR: SPIR-V Module

© The Khronos® Group Inc. 2019 - Page 18

IMR Traversals
SPIR-V Module in Memory

© The Khronos® Group Inc. 2019 - Page 19

IMR Traversals

SpirvVisitor
 virtual bool visit(SpirvModule*, Phase) { return true; }

 virtual bool visit(SpirvFunction*, Phase) { return true; }

 virtual bool visit(SpirvBasicBlock*, Phase) { return true; }

 virtual bool visit(SpirvBinaryOp*) { return true; }

 virtual bool visit(SpirvImageOp*) { return true; }

 // ...

CapabilityVisitorLowerTypeVisitor ...

© The Khronos® Group Inc. 2019 - Page 20

IMR Traversals
SpirvModule

bool invokeVisitor(const SpirvVisitor* visitor) {
//...
for (auto fn : functions)

 if (!fn->invokeVisitor(visitor, reverseOrder))

 return false;

//...
}

SpirvFunction
bool invokeVisitor(const SpirvVisitor* visitor) {
for (auto *bb : orderedBlocks)

 if (!bb->invokeVisitor(visitor))

 return false;

}

SpirvBasicBlock
bool invokeVisitor(const SpirvVisitor* visitor) {
for (auto *inst : instructions)

 if (!inst->invokeVisitor(visitor))

 return false;

}

SpirvInstruction
bool invokeVisitor(const SpirvVisitor* visitor) {
 return visitor->visit(this);

}

CapabilityVisitor
class CapabilityVisitor : public SpirvVisitor {

public:

bool visit(SpirvImageOp *) {

 // Add capabilities related to SPIR-V Image instructions...

}

bool visit(SpirvEntryPoint *instr) {

 // Add Shader/Geometry/Tessellation capability based on the

execution mode

}

// Visitor for other instructions...

};

CapabilityVisitor visitor;
module->invokeVisitor(&visitor);

© The Khronos® Group Inc. 2019 - Page 21

• HLSL min16int, min16float, etc.

• RelaxedPrecision is applied to the variable

• Must also be propagated forward to arithmetic ops using the variable

Support for min-types

OpDecorate %a RelaxedPrecision

 OpDecorate %b RelaxedPrecision

 ; ...

%a = OpVariable %int32 Function

%b = OpVariable %int32 Function

%1 = OpIAdd %int32 %a %b

%2 = OpIAdd %int32 %1 %int_5

%3 = OpIAdd %int32 %2 %int_6

© The Khronos® Group Inc. 2019 - Page 22

Support for HLSL precise
• Arithmetic operations that modify the value of a precise variable

• Propagate NoContraction decoration

float4 a, b, c, d;

float3 r = float3(a * b); // should be precise

float3 s = float3(c * d); // should be precise

precise float4 v;

v.xyz = r + s; // should be precise

v.w = a.w * b.w + c.w; // should be precise

© The Khronos® Group Inc. 2019 - Page 23

Better Debug Information
● Starting with line number info (OpLine)
● Point to the HLSL source file and line number

new.hlsl

1 groupshared int b;

1 #include "new.hlsl" main.hlsl

2 [numthreads(4, 4, 4)]

3 void main(uint3 tid : SV_DispatchThreadID) {

4 foo(b);

5 }

%main_hlsl = OpString “main.hlsl”
%new_hlsl = OpString “new.hlsl”
...
OpLine %new_hlsl 1 17
%b = OpVariable %_ptr_Workgroup_int Workgroup
...
OpLine %main_hlsl 4 4
OpFunctionCall %void %foo %b

© The Khronos® Group Inc. 2019 - Page 24

Thank you!

