KHRCONOS

GROUP

DXC Update:
HLSL to SPIR-V for Vulkan

Ehsan Nasiri, Google
SIGGRAPH, July 31, 2019

NOS

KHROS

Overview

» DXC: Background
e Feature Coverage
e Downloads and Docs

e What’s new

© The Khronos® Group Inc. 2019 - Page 2

DXC: Background

e DirectXShaderCompiler (DXC)

- Microsoft’s next-gen HLSL compiler
- Open sourced in January 2017
- Based on LLVM/Clang

e Spiregg: HLSL to SPIR-V compilation using DXC

- Google contributing SPIR-V CodeGen since April 2017

8; - Share front-end parsing, HLSL validation
Z: - Recommended DXC for HLSL to SPIR-V compilation

© The Khronos® Group Inc. 2019 - Page 3

NOS

KHROS

DXC: Background

HLSL [

Front-End
Parsing
HLSL
Validation

DXC

~

— DXIL backend

N

Micrpsoft“"

DirectX

J

AST)

A

=) SPIR-V backend

N

J

|

SPIR-V

DXIL

SPIR-V/

Metadata

——> SPIRV-Tools |

« Assemble (spirv-as)

« Disassemble (spirv-dis)
« Optimize (spirv-opt)

- Validate (spirv-val)

Vu likan.

p The Khronos® Group Inc. 2019 - Page 4

KHRONO §

DXC: Goal

Make HLSL a first-class citizen for Vulkan

© The Khronos® Group Inc. 2019 - Page 5

DXC: Current Status

e / Covers ~all native HLSL features
o Csh features

B Math types, Control flows, Functions, enums, etc.
o C++75M features
m Resource types and methods, Namespaces, structs, etc.

e \/ Supports 16-bit and 32-bit types

NOS

KHROS

© The Khronos® Group Inc. 2019 - Page 6

NOS

KHROS

DXC: Current Status
e Supports Shader Model 6.2 and below

e Supports Vulkan 1.0 & 1.1

© The Khronos® Group Inc. 2019 - Page 7

DXC: Current Status

e Covers ~all Vulkan KHR/EXT extensions
o Up to SPV_EXT_descriptor_indexing

o SPV_EXT_physical_storage_buffer not yet supported

e Vendor extensions
o Mainly up to the vendor to contribute
o Code reviews, testing, documentation required
o E.g. Supports NV RTX for Vulkan (Contribution by NVIDIA)

NOS

KHROS

© The Khronos® Group Inc. 2019 - Page 8

DXC: Linux and macOS

e Windows specific techniques
o Adapter code for non-Windows platforms (for COM, SAL, etc)

e Master branch fully supported Linux and macOS now!
o Travis Cl running for all commits and pull requests

NOS

KHROS

© The Khronos® Group Inc. 2019 - Page 9

https://travis-ci.org/microsoft/DirectXShaderCompiler

NOS

KHROS

Using DXC: Downloads and Docs

e Pre-built binaries (Windows)
- Rolling release build from latest master branch:
- http://khr.io/dxcappveyorbuild

e User manual

- How HLSL and Vulkan language features are translated:
- http://khr.io/hlsl2spirv

e How to build
- Windows
- Linux & macQS

© The Khronos® Group Inc. 2019 - Page 10

http://khr.io/dxcappveyorbuild
http://khr.io/hlsl2spirv
https://github.com/microsoft/DirectXShaderCompiler/blob/master/README.md#building-sources
https://github.com/microsoft/DirectXShaderCompiler/blob/master/docs/DxcOnUnix.rst

NOS

KHROS

What’s New

© The Khronos® Group Inc. 2019 - Page 11

NOS

KHROS

In-Memory Representation of SPIR-V

 Faithful representation for
- Instructions
- Basic blocks
- Functions
- Modules
- etc.

© The Khronos® Group Inc. 2019 - Page 12

ZO

IMR: SPIR-V Instructions

SpirvUnaryOp

SpirvBinaryOp

SpirvimageOp

SpirvLoad

SpirvStore

Spirvinstruction

SpirvConstantBoolean

SpirvTerminator || SpirvConstant

SpirvConstantFloat

SpirvBranch

SpirvKill

O » Leverage polymorphism for module traversals

(a2

- -
2

o LLVM-style RTTI: llvm::isa<SpirvConstant>(ptr)

SpirvConstantinteger

SpirvConstantComposite

SpirvConstantNull

© The Khronos® Group Inc. 2019 - Page 13

®

NOS

KHROS

IMR: SPIR-V Instructions

Spirvinstruction

spv::0p opcode;
uint32_t resultld;
QualType astType;
SpirvType *spvType;

SourcelLocation srcloc;

/\

SpirvBinaryOp

SpirvInstruction *1lhs;
SpirvInstruction *rhs;

SpirvAccessChain

SpirvInstruction *base;
vector<SpirvInstruction *> indices;

© The Khronos® Group Inc. 2019

- Page 14

®

NOS

KHROS

IMR: SPIR-V Basic Block

SpirvBasicBlock

uint32_t labelld;

string labelName;
vector<SpirvBasicBlock *, 2> successors;
SpirvBasicBlock *mergeTarget;
SpirvBasicBlock *continueTarget;

/] ...

vector<SpirvInstruction *> instructions;

© The Khronos® Group Inc. 2019 - Page 15

®

NOS

KHROS

IMR: SPIR-V Function

SpirvFunction

uint32_t functionId;

SpirvType *returnType;

SpirvType *functionType;

string functionName;
vector<SpirvFunctionParameter *, 8> parameters;
vector<SpirvVariable *> variables;

//

vector<SpirvBasicBlock *> basicBlocks;

© The Khronos® Group Inc. 2019 - Page 16

®

NOS

KHROS

IMR: SPIR-V Module

SpirvModule

vector<SpirvCapability*> capabilities;
vector<SpirvExtension*> extensions;
vector<SpirvExtInstImport *> extInstSets;
SpirvMemoryModel *memoryModel;
vector<SpirvEntryPoint *> entryPoints;
vector<SpirvExecutionMode *> executionModes;
vector<SpirvModuleProcessed *> moduleProcesses;
vector<SpirvDecoration *> decorations;
vector<SpirvConstant *> constants;
vector<SpirvVariable *> variables;

//

vector<SpirvFunction *> functions;

© The Khronos® Group Inc. 2019 - Page 17

NOS

KHROS

IMR Traversals

SPIR-V Module in Memory

© The Khronos® Group Inc. 2019 - Page 18

®

wn.

O

KHROS

IMR Traversals

virtual bool
virtual bool
virtual bool
virtual bool
virtual bool

/] ...

SpirvVisitor
visit(SpirvModule*, Phase) { return true; }
visit(SpirvFunction*, Phase) { return true; }
visit(SpirvBasicBlock*, Phase) { return true;
visit(SpirvBinaryOp*) { return true; }
visit(SpirvImageOp*) { return true; }

}

LowerTypeVisitor

CapabilityVisitor

© The Khronos® Group Inc. 2019 - Page 19

®

NOS

KHROS

IMR Traversals

CapabilityVisitor
class CapabilityVisitor : public SpirvVisitor {
public:
bool visit(SpirvImageOp *) {
// Add capabilities relate
}

bool visit(SpirvEntryPoint *instr) {
// Add Shader/Geometry/Tessellation capabi
execution mode

}

// Visitor for other instructions...

}s

0 SPIR-V Image instructions...

based on the

SpirvModule
bool invokeVisitor(const SpirvVisitor* visitor) {
/...
for (auto fn : functions)

if (!fn->invokeVisitor(visitor, reverseOrder))
return false;

//...
}
7
/ SpirvFunction
bool invokeVisitor(const SpirvVisitor* visitor) {
for (auto *bb : orderedBlocks)

if (!bb->invokeVisitor(visitor))
return false;

VA

//

/SpirvBasicBIock

bool invokeVisitor(const SpirvVisitor* visitor) {
for (auto *inst : instructions)

if (!inst->invokeVisitor(visitor))
turn false;

CapabilityVisitor visitor;
module->invokeVisitor(&visitor);

—————

Instruction
bool invokeVisitor SpirvVisitor* visitor) {

return visitor->visit

}

© The Khronos® Group Inc. 2019 - Page 20

®

NOS

KHROS

Support for min-types

e HLSL minl6int, minl6float, etc.
e RelaxedPrecision is applied to the variable
e Must also be propagated forward to arithmetic ops using the variable

OpDecorate %a RelaxedPrecision
OpDecorate %b RelaxedPrecision

J

%a

OpVariable %int32 Function

%b = OpVariable %int32 Function
%1 = OpIAdd %int32 %a %b

%2 = OpIAdd %int32 %1 %int_5

%3 = OpIAdd %int32 %2 %int 6

- ...- Xhronos® Group Inc. 2019 - Page 21

NOS

KHROS

Support for HLSL precise

e Arithmetic operations that modify the value of a precise variable

®* Propagate NoContraction decoration

float4 a, b, c, d;
float3 r

float3(a * b); //

float3 s = float3(c * d); //

precise float4 v;
V.XYZ = I + S;
V.W = a.w * b.w + c.w;

//
//

should be
should be

should be
should be

precise
precise

precise
precise

© The Khronos® Group Inc. 2019 - Page 22

®

NOS

KHROS

Better Debug Information

e Starting with line number info (OpLine)
e Point to the HLSL source file and line number

1 #include "new.hlsl" main.hlsl new.hlsl
2 [numthreads(4, 4, 4)]

3 void main(uint3 tid : SV _DispatchThreadID) { 1 groupshared int b;

4 foo(b);

5 }

$main hlsl = OpString “main.hlsl”
gnew hlsl = OpString “new.hlsl”

OpLine %new hlsl 1 17
$b = OpVariable % ptr Workgroup int Workgroup

OpLine %main hlsl 4 4
OpFunctionCall %void %foo %b

© The Khronos® Group Inc. 2019 - Page 23

NOS

KHROS

Thank you!

© The Khronos® Group Inc. 2019 - Page 24

