Google

SwiftShader

Reference Implementation and Fallback

Alexis Hétu / July 31, 2019

Introduction

e (Graphics driver for the CPU
e Accelerated by

o Multi-core

o SIMD vectors

o Specialized instructions

Google all-in on Vulkan

e High performance is key

e Mandatory for Android Q phones,
except in extreme low-end

e Stadia uses Vulkan on Linux

e Chrome is adding Vulkan support

e The Skia graphics library has a
Vulkan backend

e Dawn (WebGPU) also has a Vulkan
backend

Making 3D Universally Accessible

Android Web
_______ ‘.
. WebGL
. OpenGLES || WebGPU |
' '
ANGLE Dawn
______ S D T .
Vulkan Metal DX12

SwiftShader Vendor Driver

SwiftShader’s Transition to Vulkan-only

[Application]
4 Y T |
GLSL ' ANGLE . glslang
OpenGL ES ! il ——————
ASM :[Vulkan]
8 !

Renderer [Device]

Shader | Pipeline / SPIR-V

[Reactor 1

[JIT] LLVM } Subzero]

[CPU]

Reactor

e High level C-like language for code generation of low level CPU operations

e Produces code for a JIT compiler rather than executing that code

e Example:

//
if (condition) //
{

Int a = computeSomething(); //

//

If(a == Int(0)) //
{
a += Int(10); //

//

Regular “if ()” selects whether instructions are generated,
no branch in resulting JITed code

“a” is a Reactor integer object

“If()” is evaluated at runtime and results

in a dynamic branch inside the JITed code

The “+=" operator generates the necessary instruction (s)
for this operation to be evaluated in the JITed code

SwiftShader Vulkan driver

e Passes 100% of dEQP-VK conformance test suite
e Vulkan 1.1 mandatory features only
e x86 and ARM, 32 bit and 64 bit

I UNREACHABLE UNIMPLEMENTED [l CRASH TIMEOUT [l FAIL [l PASS
Trend line for PASS
:
e WSI for desktop and mobile TR T e
75% L 75%
80% LA 50%
0% 0%
N O NN O O N O 00 O M W © — M O N & O O = MO N O — M W0

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

OOOOOOOOOOOOOOOOOOOOOOOOOOOO

LT - e e e N M= A= N = - A= = . M= Y. (SN = N M= - - M= - Y= (=
B A e A A A A A A A A A
R EEEEEEE-EE-EE-EE-E-E
S AAAAJAJACAAANAAVAATNNNNTNNNNNTNTNTTRACA

Future directions

e PERFORMANCE!

e Tightintegration with ANGLE
o Short term, Vulkan features required by ANGLE for OpenGL ES 2.0 and 3.0 translation
o Longer term, adding features required for OpenGL ES 3.1and 3.2

e Integration into Chromium

o Chromium Vulkan backend tests on build bots
o ANGLE on SwiftShader Vulkan as WebGL fallback
o SwiftShader Vulkan as Dawn (WebGPU) fallback

e Android

o Tests on SwiftShader Vulkan

Highlights of using SwiftShader Vulkan

e Rapid prototyping of a new Vulkan feature

Building with sanitizers (like ASAN or TSAN) to let fuzzers find cracks in the
implementation/spec and improve test coverage

Platform-independent shader debugging

Finding bugs in applications making assumptions about available features

macOS support

Ability to test dEQP in under 15 minutes on a single (powerful) workstation

Conclusion

Conformant, consistent,
hardware-independent
results on Windows, Linux,
macQOS, Android, Fuchsia
on x86, ARM, and more

o VulkanGlass - Build 19.1@5389795

T N B
Glass BT

i 73
| g’ < 4
2/ B ;/

Reflection + Chromatic Dispersion

Left / Right : Change the effect
Up / Down : Tilt camera

Go gle KHRCONOS

swiftshader@googlegroups.com

swiftshader.googlesource.com sugoi@google.com

mailto:swiftshader@googlegroups.com
http://swiftshader.googlesource.com/SwiftShader
mailto:sugoi@google.com

