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Generating experimentally unrelated target
molecule-binding highly functionalized
nucleic-acid polymers using machine
learning

Jonathan C. Chen 1,2,3, Jonathan P. Chen4,5, Max W. Shen 1,2,3,6,
Michael Wornow1,2, Minwoo Bae1,2, Wei-Hsi Yeh 1,2,3,7, Alvin Hsu 1,2,3 &
David R. Liu 1,2,3

In vitro selection queries large combinatorial libraries for sequence-defined
polymers with target binding and reaction catalysis activity. While the total
sequence space of these libraries can extend beyond 1022 sequences, practical
considerations limit starting sequences to ≤~1015 distinct molecules. Selection-
induced sequence convergence and limited sequencing depth further con-
strain experimentally observable sequence space. To address these limita-
tions, we integrate experimental and machine learning approaches to explore
regions of sequence space unrelated to experimentally derived variants. We
perform in vitro selections to discover highly side-chain-functionalized nucleic
acid polymers (HFNAPs) with potent affinities for a target small molecule
(daunomycin KD = 5–65 nM). We then use the selection data to train a condi-
tional variational autoencoder (CVAE) machine learning model to generate
diverse and unique HFNAP sequences with high daunomycin affinities
(KD = 9–26 nM), even though they are unrelated in sequence to experimental
polymers. Coupling in vitro selection with a machine learning model thus
enables direct generation of active variants, demonstrating a new approach to
the discovery of functional biopolymers.

In vitro selection—iterative cycles of selection, amplification, and
occasional mutagenesis on large combinatorial libraries—is a well-
established technique1,2 that enables the isolation of sequence-defined
polymers with high levels of binding3,4 or catalytic activity5–9. When
in vitro selection was first developed, limited sequencing capabilities
restricted the identification of selection outcomes to only a modest
number of active sequences. Subsequent developments in high-
throughput sequencing (HTS) and lowered sequencing costs have

made it possible to reconstruct broader fitness landscapes, revealing
broader relationships between sequence and activity. Even state-of-
the-art sequencing technologies, however, are still limited to ~1010

reads, which precludes full sequencing of the typical 10-1000 pmol
(6 × 1012 to 6 × 1014 molecules) starting libraries used for in vitro
selections. As a result, attempts to map sequences onto the global
fitness landscape are typically limited to regions of local space from
late-stage selection rounds, where the high convergence and low
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sequence diversity makes comprehensive identification of active
sequences possible10–12.

Because most biopolymer fitness landscapes are rugged12,13, with
multiple local optima, characterization of the global fitness landscape
requires identification of multiple, distinct, active variants14. To
address this challenge, improvements to in vitro selections have
increased the probability of finding active sequences in a random,
combinatorial library15–18 and made enrichment more efficient19,20.
However, these approaches are still subject to limitations imposed by
in vitro selection itself, sequence convergence, and limited sequencing
depth. In the current study, we present an integrated approach for
discovering diverse, highly active sequences unrelated to any pre-
viously known variants: direct generation using a machine learning
model trained on in vitro selection data. High-activity sequences
generated by this machine learningmodel have no apparent sequence
similarity to experimental sequences used to train the model, sug-
gesting that the model has learned the fitness landscape sufficiently
well to generate novel yet highly active variants.

To obtain data sufficient for training, we conducted an optimized
in vitro selection campaign on a chemically diverse starting library of
sequence-defined side-chain containing synthetic polymers known as
highly functionalized nucleic acid polymers (HFNAPs)16,21. HFNAPs
consist of oligonucleotides with side-chains on every third nucleotide
that are translated from DNA templates using a ligation-based trans-
lation system (Fig. 1a). Translation is mediated by T3 ligase and uses a
set of customizable trinucleotide building blocks containing a 5'
modified nucleobase with side-chains chosen by the researcher
(Fig. 1b)16,21. In contrast with other non-natural polymer systems com-
patible with Darwinian selection that replace individual nucleotide
triphosphates with functionalized variants15, or that use non-natural
base pairs17,22, the HFNAP system uses 32 codons, which collectively
can encode up to 32 distinct side-chains. The current iteration of the

HFNAP translation system consists of 15 consecutive trinucleotide
building blocks, each of which contains one of eight different side-
chains encoded by 32 codons. While the codon system introduces
modest constraints to the sequence space that can be explored, the
resulting library’s side-chain diversity (815 = 3.5 × 1013) is orders of
magnitude larger than the side-chain diversity achievable with
polymerase-synthesized functionalized oligonucleotides of the same
sequence length. The enhanced chemical diversity of HFNAPs com-
pared to conventional oligonucleotides improves the likelihood of
isolating variants with desirable properties such as target protein
binding16,23.

The use of machine learning to enable functional synthetic poly-
mer discovery presents new challenges. Many machine learning-aided
protein evolution efforts have relied extensively on evolved, active
protein sequences that are often incorporated directly into the
resulting sequence predictions24,25. When starting from protein var-
iants with low but non-zero levels of activity, machine learning can
incorporate previously solved protein structures26, or related protein
sequences optimized over millions of years of natural evolution27. In
contrast, in vitro selections start from naïve libraries18,28, resulting in
sparse and noisy datasets in which active examples are vastly out-
numbered by inactive sequences. Sequence convergence during
selection also limits the sequence diversity of active variants. More-
over, low-throughput hit characterization often limits the number of
sequences for which activity can be measured. In the absence of
comprehensive ground-truth activity measurements from labor-
intensive biochemical assays, enrichment values are used as a proxy,
introducing substantialmeasurement noise as the correlation between
enrichment values and desired activity can be modest, influenced by
the stochasticity of selections and activity-independent biases that
occur during translation, selection, or PCR amplification29,30. Finally,
limited sequencing depth restricts the ability to sample and observe

Fig. 1 | HFNAP building blocks, translation, and selection. a Overview of the
HFNAP translation, selection against daunomycin, and reverse translation to
regenerate DNA templates. b Structures of the 5'-phosphorylated trinucleotide

monomer building blocks used in this selection, along with their associated, four-
fold redundant DNA codons.
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the evolutionary trajectories of large numbers of input sequences,
resulting in a noisy view of already noisy data.

Despite the lack of optimal training data, we envisioned a model
that could learn aspects of a fitness landscape sufficient to generate
active sequences unrelated to the limited diversity of sequences that
can be identified from an in vitro selection. Generating active
sequences in this manner is difficult because the space of possible
outputs is very large, while the space of correct outputs is com-
paratively small. In this study, we address these challenges experi-
mentally using judiciously chosen selection conditions and a
chemically diverse starting library of HFNAPs to acquire data of
sufficient quality to train a machine learning model. These selection
improvements increase enrichment efficiency, enabling the dis-
covery of highly active sequences that bind daunomycin, a small-
molecule chemotherapeutic31–33.

We then apply a generative machine learning approach to learn
the joint probability distribution between HFNAP sequence space and
daunomycin-binding affinity. Our trainedmodel successfully uses data
from a single in vitro selection to generate multiple diverse, highly
active polymer sequences with no apparent sequence similarity to one
another or to the sequences from the in vitro selection, in contrastwith
the tendency of individual selection campaigns to produce highly
sequence-related hits. Analysis of predicted secondary structures for
CVAE-generated sequences and in vitro selection sequences reveal
secondary structure conservation that is not present among random
sequences of the same composition, consistent with the machine
learning model having achieved a broad understanding of the
daunomycin-binding fitness landscape. These findings establish an
integrated experimental and machine-learning approach to generate
many sequence-defined polymer sequenceswith strong target binding
activity, including those unrelated in primary sequence to any pre-
viously identified experimental variants, with broad implications for
the discovery and application of non-natural biopolymers.

Results
HFNAP library and selection design
The HFNAP translation system (Fig. 1a) uses a DNA template with a 45-
bp coding region containing 15 consecutive codons to recruit building
blocks drawn from a set of 32 side-chain-functionalized trinucleotides
(Fig. 1b). As the building blocks hybridize to their complementary
codons16,21, T3 DNA ligase ligates their phosphodiester backbones into
one continuous strand34. HFNAPs are then selectively eluted through
biotin capture of the heteroduplex HFNAP–DNA double-stranded
product followed by alkaline denaturation to remove the non-
biotinylated HFNAP strand (Fig. 1a). The total sequence space in this
library is 3215 = 3.8 × 1022 sequences.

Following DNA-templated translation of a 125 pmol starting tem-
plate library (7.5 × 1013 molecules), we performed iterated rounds of
in vitro selection for binding to immobilized daunomycin. Biotinylated
daunomycin was synthesized by coupling a biotin linker to dauno-
mycin’s primary amine and immobilized by incubating the product
with streptavidin-linked magnetic beads (see Methods). To prevent
selection of HFNAPs that bind the biotin linker or the streptavidin-
linked beads, a negative selection step was introduced after round 4.
Translated HFNAPs were incubated with a 1:1 mixture of blank
streptavidin-linked beads and streptavidin-linked beads with immobi-
lized negative selection linker (see Methods). The flow-through from
this negative selection stepwas then subjected to positive selection for
binding to immobilized daunomycin.

After removal of the positive selection flow-through, beads were
washed three times with selection buffer (see Methods). Bound
HFNAPs were eluted by reduction of the disulfide bond connecting
daunomycin and thebiotin linker (rounds 1–3)or by target elutionwith
1mM daunomycin for 30min, followed by two washes with selection
buffer (rounds 4 and 5a-9a) (Fig. 2a). The eluted HFNAPs were reverse

translated in a PCR reaction using Q5 DNA polymerase, which we
previously found to efficiently copyHFNAPs back into complementary
DNA21. Full-length amplicons were purified by native polyacrylamide
gel electrophoresis (PAGE). Template DNA strands were isolated by
biotin capture and alkaline denaturation for the next round of HFNAP
library translation and selection.

We performed nine iterated rounds of in vitro selection for dau-
nomycin binding using the conditions summarized in Fig. 2a (selection
1, rounds 1–4 and 5a-9a). As the selection progressed, the ratio of
eluted HFNAPs to HFNAPs in the flow-through increased, consistent
with enrichment of daunomycin-binding HFNAPs (Supplementary
Fig. 1). The sequence composition of the eluted HFNAPs at the end of
each round of selection was analyzed by high-throughput DNA
sequencing (HTS).We ranked sequences byoverall frequency in round
9a, and the top four HFNAPs were synthesized by ligase-mediated
DNA-templated translation of individual templates (see Methods). We
characterized the binding affinity of these individual polymers for free
daunomycin by microscale thermophoresis (MST) and found that
these HFNAPs bound with modest affinity (Kd = ~1–2 µM) (Fig. 2b and
Supplementary Table 1). These results revealed that modest affinity
was sufficient to pass the initial selection campaign and suggested that
selection stringency could be increased to yieldmore active polymers.

Modifying the selection to increase stringency
The optimal selection stringency for each round of selection is a
delicate balance between preserving sequence diversity and enabling
efficient enrichment of active variants. High-stringency conditions
applied tooearly can result in selection failure (no legitimate survivors)
or excessive loss of sequence diversity before rare, high-activity
sequences can be accessed35. Carefully increasing selection stringency
minimizes the probability that the stochastic, error-prone, and biased
nature of selection steps results in irreversible loss of sequences that
may give rise to the top-performing variants at later rounds of
selection.

An analysis of the evolutionary trajectory of selection 1 informed
our decision to restart the daunomycin-binding selection at round 4
with higher selection stringency. The top tenmost enriched sequences
from the start of the selection were already highly ranked as early as
round 3 and subsequent rounds resulted in minimal changes to the
overall ranking and distribution of top sequences (Fig. 2c). However,
substantial enrichment occurred over these intermediate rounds, with
the top ten most enriched sequences comprising 0.6%, 2.9%, and 10%
of rounds 3, 4, and 5a, respectively. The most enriched sequence
progressed similarly, representing 0.08%, 0.4%, and 1.4% of rounds 3,
4, and 5a, respectively. Overall, the intermediate rounds 3 to 5a
exhibited a 5-fold sequence convergence that slowed thereafter
(Fig. 3a). The overrepresentation of the top ten sequences in round 5,
as well as the slowing of sequence convergence in subsequent rounds,
eliminated the possibility of restarting the selection at round 5. We
chose to restart the selection from the round 4 elution because of its
favorable sequence diversity and also because the round 4 selection
was the first in which we implemented target elution with free dau-
nomycin, which in principle should bias for polymers with binding
affinity for free daunomycin and remove those that require the linker
or bead.

To increase requirements for target binding (kon) and dissociation
(koff), we began by raising the selection temperature to 37 °C, as
increased temperature generally increases koff since dissociation is an
entropically favored, TΔS >0 process36. We also anticipated that ele-
vated temperatures coulddenaturemarginally stableHFNAPs and thus
enrich sequences that adopt more stable conformations. We further
increased stringency by introducing multiple elution steps to our
protocol. The original selection used a single target elution step of
30minutes, eluting ≥95% of HFNAPs with a target-bound half-life
≤7minutes and only partially eluting HFNAPs with longer half-lives.
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The inverse correlation between binding half-life and koff suggests that
this approach may result in selection survivors dominated by modest-
affinity binders with fast off-rates rather than with strong binders with
slow off-rates. To improve selection outcomes by selectively enriching
slow off-rate HFNAPs, we implemented an iterated target elution step
in which initial 1-minute and 10-minute elutions with 1mM daunomy-
cin allowweakbinderswith fastoff-rates to elute andbediscarded. The
final 60-minute elution captures slower off-rate binders to advance
into subsequent rounds of selection (Fig. 2a). We anticipated that the
combined changes to increase selection stringencywould increase the
probability of identifying high-affinity HFNAPs and may even select
against modest-affinity binders.

High-stringency selection improves HFNAP binding affinity
After four additional rounds of high-stringency selection (Fig. 2a,
selection 2, rounds 4 and 5b-8b), we observed accelerated sequence
convergence, consistent with increased selection stringency (Fig. 3a).
The increased selection stringency resulted in selection 2 enrichment
values between round 4 and round 8b being greater than selection 1
enrichment values between round 4 and round 9a. The top ten most
enriched sequences in selection 1 represented 2% of round 4 and 57%
of round 9a, while the top tenmost enriched sequences in selection 2
represented 0.3% of round 4 and 78%of round 8b, a 9-fold increase in
the pooled enrichment (Supplementary Fig. 2). A comparison of the
evolutionary trajectories of the top ten sequences in the two selec-
tion conditions revealed faster and larger ranking changes for the top
sequences in selection 2 (Fig. 3b) compared to selection 1 (Fig. 2c).
Increased selection stringencies also resulted in strong side-chain

preferences among surviving sequences that favored the polar ally-
lamine and alcohol side-chains (Supplementary Fig. 3), which were
not observed in selection 1 (Supplementary Fig. 4). Likewise, we
observed decreases in the side-chain frequency of the hydrophobic
isopentyl, cyclopentyl, and fluorophenyl side-chains over the course
of the selection. These trends contrast sharply with the outcomes of
our previous HFNAP selections for binding target proteins, which
strongly enriched for hydrophobic side-chains16,23. Finally, 676 of the
top 1000 most enriched sequences at the end of selection 1 were
found to de-enrich in selection 2 (Supplementary Fig. 5), demon-
strating the effectiveness of high-stringency selection conditions in
removingweakbinders andproviding further evidence that selection
1 resulted in modest daunomycin affinity. Collectively, these results
suggest that the more stringent selection conditions in selection 2
increased enrichment efficiency, enabling identification of rare
sequences.

To directly testwhether increased selection stringency resulted in
the isolation of HFNAPs with improved binding affinity, we used MST
to characterize the binding affinities of the top ten most enriched
sequences at the end of selection 2. These HFNAPs demonstrated
binding affinities between Kd = 5–65 nM, representing a ~15-200-fold
improvement over HFNAPs emerging from selection 1 (Fig. 3c and
Supplementary Fig. 6). An independent binding assay using gel filtra-
tion of radiolabeled daunomycin corroborated this greatly improved
binding affinity compared with the most highly enriched selection 1
HFNAPs (Supplementary Fig. 7). The same HFNAP sequences without
the side-chains were also assayed for binding affinity, and showed ~10-
1000-fold lower daunomycin affinity (Fig. 3c and Supplementary

Fig. 2 | Selections against daunomycin yield HFNAPs with binding affinity.
a Selection scheme and parameters are shown. Early rounds utilize reducing con-
ditions to elute binders, to broadly capture HFNAPs. Subsequent rounds rely on
target elutionwith 1mMdaunomycin. Selection 1 (rounds 1–4, 5a-9a) is denoted by
the upper path, selection 2 (rounds 4, 5b-8b) by the lower path. b MST

characterization of the binding affinity for the top 4most enriched sequences from
selection 1. Sequences were found to bind with Kd = 1–2 µM. Values and error bars
reflect the mean and SEM of n = 3 independent replicates. Error bars for some
values are too small to extend beyond the data point. c The evolutionary trajectory
of the top ten most enriched sequences in selection 1.
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Fig. 6), indicating that the HFNAP side-chains play important roles in
daunomycin binding.

To further characterize specific structure-activity relationships
between the HFNAPs surviving selection and their side-chains, we
synthesized 14 variants ofDm-HS-1, themost highly enriched sequence
at the end of selection 2, round 8b, in whichwe replaced each building
blockwith the correspondingDNA trinucleotide lacking any side-chain
(Fig. 3d) (one building block, TGC, was present twice in Dm-HS-1). We
found that two side-chains play a critical role in binding affinity.
Removal of thefluorophenyl side-chain from theCGAbuilding block at
position 1 or removal of the cyclopropyl side-chain from the CCA
building block at position 9 resulted in >10-fold loss in binding affinity.
Additionally, loss of the alcohol side-chain from the TGA building
block at position 6 decreased binding affinity by 3-fold. Removal of
each of the remaining sidechains individually did not substantially
affect binding affinity (Fig. 3d and Supplementary Table 2). Together,
the results establish that increased selection stringency enriched rare
HFNAPs with improved daunomycin-binding affinities that are
strongly dependent on the presence of specific side-chains.

Generative machine learning model methodology
Identifying active biopolymers beyond those closely related to current
variants is a critical step towardsmapping the globalfitness landscape,
and is a primarychallengeof biopolymer evolution efforts16. Additional

active variants can be found through increased experimental sam-
pling,which results inmore comprehensive sequence space searchbut
is time- and labor-intensive. While multiple, parallel selections against
the same target are likely to yield a more diverse set of active variants,
each of these selections remains limited by the same sequencing
constraints and sequence convergence inherent to in vitro selections.
Recently, generative machine learning models have risen to promi-
nence for their ability to generate entirely new text37,music38, or faces39

based on training examples. A generative machine learning model
trained on HFNAP in vitro selection data could, in principle, learn the
HFNAP fitness landscape for daunomycinbinding. The resultingmodel
could then directly generate many high-activity HFNAPs, in theory
including those with sequence diversity approaching that of random
sequences, obviating the need for increased sampling or search depth.

To generate HFNAP sequences with daunomycin affinity, we used
a variational autoencoder (VAE), a type of generativemodel commonly
used to make predictions with biological sequence data40,41. VAEs
attempt to model the observed data, HFNAP sequences, as a function
of a latent or hidden variable (using Bayes’ Theorem). The VAE model
architecture begins with an encoder neural network that compresses
the input sequence into a lower-dimensional space called the latent
space. This dimensionality reduction from the input space to the latent
space is critical because it forces the network to embed the latent
space with only the information required for successful sequence

Fig. 3 | Increased selection stringency yieldsmore potent daunomycin-binding
HFNAPs. a Sequence convergence for selection 1 and selection 2. b The evolu-
tionary trajectory of the top ten most enriched sequences in selection 2. c MST
characterization of the binding affinity for the top ten most enriched sequences
from selection 2. Dm-HS-4, 5, and 9 are omitted for clarity, asDm-HS-1, 4, 5 andDm-
HS-3, 9 are each related by 1 nucleotide. 1 Δ s.c. denotes the sequence (Dm-HS-1)
without side-chains. Sequences were found to bind with Kd = 5–65 nM. Values and
error bars reflect themean and SEM for n = 3 independent replicates. Error bars for

some values are too small to extend beyond the data point. d 14 Dm-HS-1 mutants
were translated where a single building block is replaced with the corresponding
building block lacking any side-chain. MST characterization of the binding affinity
for these Dm-HS-1 mutants is shown. CGA Δ s.c. denotes Dm-HS-1 without a side-
chain for the CGA building block. The table shows individual side-chain removals
that result in the largest increase in Kd. The activity of the original Dm-HS-1
sequence is shown in black for comparison. Values and error bars reflect the mean
and SEM for n = 3 independent replicates.
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reconstruction. The decoder networkmust then reconstruct the same
input sequence by taking independent samples from this lower-
dimensional representation, the latent probability distribution. During
model training, the parameter weights for the two networks and the
latent distribution are jointly optimized such that sequences can be
accurately embedded into and reconstructed from the latent prob-
ability distribution. A visual example is shown in Fig. 4a, in which
correct sequence reconstruction results in minimal changes to the
model, while incorrect sequence reconstruction results in larger
modification of themodel tominimize themagnitude of the error. The
trained model can then generate new HFNAP sequences by sampling
from the latent probability distribution and using the generative
decoder to produce new sequences (Fig. 4a).

A trained VAE model could therefore generate HFNAP sequences
with a broad range of affinities for daunomycin. In order to direct the
model to generate only the most active sequences, however, the

model requires data labels that indicate whether sequences are active
or inactive. We thus moved from an unsupervised model (without
labels), the VAE, to a semi-supervised model (with labels), known as a
conditional variational autoencoder (CVAE)42 (Fig. 4b). To label the
in vitro selection data, we defined a fitness value between 0 and 1 to
represent an HFNAP’s anticipated binding affinity for daunomycin
based on the sequence’s observed enrichment between round 4 and
round 8b of selection 2 (Methods, Fig. 4c, Supplementary Fig. 8). The
majority of the fitnesses are near 0, with ~2000 sequences with fit-
ness > 0.25. The latent distribution and fitness value are provided as
inputs to the decoder, which first uses the information to reconstruct
the sequence (Fig. 4b). The reconstructed sequence is then used as the
input to an additional network, which predicts the fitness value given
the sequence information. Because fitness prediction and sequence
reconstruction are jointly optimized as parts of the decoder, sequence
information becomes conditioned on fitness values, which can

Fig. 4 | A machine learning model for generating HFNAPs with daunomy-
cin binding affinity. a Overview of VAE structure, training and sequence gen-
eration. Sequence inputs are encoded into a probability distribution. A sample of
the probability distribution is given to the decoder, which must reconstruct the
original input sequence. Failure to accurately reconstruct the sequence results in
penalties, which are used to optimize the parameters of the encoder, decoder,
and probability distribution to improve reconstruction accuracy. After training,
the probability distribution is then sampled from and given to the decoder to
generate new HFNAP sequences. b The CVAE architecture used in this study.
Conditional VAEs introduce an additional, conditional variable, which enables the
user to specify a specific condition or state. Here, we introduce sequence fitness,
a value between 0 and 1 that represents the anticipated binding affinity for
daunomycin based on the sequence’s observed enrichment between round 4 and

round 8b of selection 2, as the conditional variable (Methods). During training,
the fitness condition becomes associated with sequence identity and the latent
distribution. Subsequently, the fitness condition enables the user to specify that
the trained CVAE generates HFNAPs with desirable binding affinities.
c Distribution of fitness values assigned to training sequences that were greater
than 0.25. d Reconstruction accuracy was used to assess training progress. The
graph shows the reconstruction accuracies of the final, trained CVAE. Accuracy
was calculated either by calculating the fraction of DNA bases that were correct,
or the fraction of codons that were correct. e Percent of generated sequences
with at least 3–6 alcohol or amine side-chains. Each point along the x-axis
represents 10,000 CVAE-generated sequences that were generated with that
given fitness value as the condition.
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associate fitness values with regions of sequence and latent space.
Successful conditioningwill enable the CVAE to generate novel HFNAP
sequences with high predicted daunomycin binding affinity.

Training a CVAE on HFNAP in vitro selection data
We performed extensive architecture search to arrive at a CVAE cap-
able of successful sequence reconstruction and fitness prediction. The
CVAEs were trained on the 172,545 HFNAP sequences that were iden-
tified between round 4 and round 8b of selection 2. We used standard
80:20 train:test splits, in which we randomly withheld 20% of the data
from training (Supplementary Fig. 8), then used the withheld
sequences to test the performance of themodel on unseen data. Initial
progress on model training seemed promising, with >90% DNA
reconstruction accuracy on the test set, with reconstruction accuracy
defined as the percentage of accurate DNA backbone bases when
comparing the correct HFNAP sequence to the HFNAP sequence pre-
dicted by the model (Supplementary Fig. 9). Since only 1% of the
sequences were likely to have high-affinity, represented by the
~2000 sequences with fitness > 0.25 (Fig. 4c), we were concerned the
model may not be accurate for high-affinity sequences and might
overemphasize inactive or modest affinity sequences.

To observe the model’s performance on high-affinity sequences,
we added an additional held-out high-fitness test set. This decision
splits the data into three groups: the training set (80%), the general-
fitness test set (19.9%), and the high-fitness test set (0.1%). The 256
high-fitness test set sequences included sequences related toDm-HS-1-
10, giving us confidence that model performance on these sequences
would be indicative of model performance on high-affinity sequences.
While this additional test set enabled us to specifically monitor model
performance on high-affinity sequences, it decreased the number of
sequences with high-fitness values (>0.85) available formodel training
by nearly half. These sequences were chosen based on having high
round 4 to round 8b enrichment values in selection 2 (see Methods).
Together, the general-fitness test set, comprised mostly of low fitness
values, and the high-fitness test set, enabled us to more accurately
observe changes to the model’s sequence reconstruction and fitness
prediction performance in response to CVAE architecture modifica-
tions. After extensive architecture search, we achieved >95% DNA
reconstruction accuracy on the high-fitness test set and, importantly,
89% DNA reconstruction accuracy on the general-fitness test set when
comparing the input DNA backbone sequences and reconstructed
DNA backbone sequences (Fig. 4d).

Model performance on both test sets is important. Supplemen-
tary Figure 10 shows the sequence-converged nature of the high-
fitness test sequences compared to the general-fitness test sequences.
If the model had only achieved high accuracy on the sequence-con-
verged, 256-member high-fitness test set and low accuracy on the
general-fitness test set, the trained CVAE might only generate
sequences similar to those in the high-fitness test set. Conversely, high
accuracy on the general-fitness test set and low accuracy on the high-
fitness test set would likely translate to a failure to generate high-
affinity sequences. Because the scarcity of active sequences in the large
sequence space (~1022) presents the greatest challenge towards pre-
dicting high-affinity sequences, we have focused thus far on improving
the model’s sequence reconstruction accuracy. The model’s high
reconstruction accuracy for both test sets suggests that it may have
learned the HFNAP fitness landscape for daunomycin binding.

We assessed the quality of our fitness model by comparing its
outputs to the fitness values used during conditioning. 97.5% of
training set and general-fitness test set sequenceswere conditioned on
fitness values ≤0.05 (Supplementary Fig. 8). As a result, the mean
squared error (MSE) between the fitness condition and the model
outputs for general test set sequences was 0.102 ± 2.61 × 10−5 (mean ±
standard deviation), compared to 0.0863 ± 2.07 × 10−5 for the training
set, which suggests high accuracy. For the 849 general-test sequences

withfitness value > 0.05, themodel alsoperformedwell with anMSEof
1.52 ± 2.73 × 10−4. The model performed similarly on the high-fitness
test set, with an MSE of 6.39 ± 2.43 × 10−5. The encouraging perfor-
mance of the trained model on sequence reconstruction and predict-
ing the fitness condition despite strong regularization enabled us to
move forward with further characterization of the model.

Our earlier analysis of the selection 2 results had indicated a
strong preference for amine and alcohol side-chains among enriched
sequences (Supplementary Fig. 3). Because HFNAP fitness is a func-
tion of the sequence, we expect that an accurate understanding of
the fitness landscape should capture relationships such as this one.
This preference for amine and alcohol side-chains can be further
quantified in the selection data by looking at the proportion of
sequences with at least 3-6 amine or alcohol sidechains as a function
of our assigned fitness values (Supplementary Fig. 11). To observe
whether our CVAE captures a similar relationship, we generated
HFNAPs by sampling the latent distribution using the reference set,
the top 3072 HFNAP sequences from the training set with the highest
fitness values. This data pre-processing step allowed us to discard
poor-performing HFNAP sequences and focus on regions of latent
space from the best-performing sequences. Sampling from this
modified latent distribution and using the full range of fitness values
to generate ten million new HFNAP sequences, we found that the
model captured both the general frequencies and relationship
between fitness and the number of amine or alcohol side-chains that
was found in the training data (Fig. 4e and Supplementary Fig. 11).
Interestingly, we found that the amine and alcohol side-chain pro-
portion remained steady, even when conditioned on extended fit-
ness values of 1.05-1.10 (Supplementary Fig. 12).While cappingfitness
values at 1 may ultimately limit the affinity of CVAE-generated
HFNAPs, we note that conditioning on limited increases in fitness
values exceeding 1 may be tolerated by the CVAE. These analyses
indicated that theCVAEhad learned a relationship between sequence
and fitness, and suggested that the CVAE could be used to generate
novel sequenceswith activity. Thus, weproceededwith experimental
characterization, to determine if the CVAE had developed a sufficient
understanding of the HFNAP fitness landscape for daunomycin
binding to generate high-affinity sequences.

Generating HFNAPs with high predicted daunomycin affinity
Satisfied with the CVAE’s sequence reconstruction and fitness pre-
diction performance on computational tasks, we next investigated
whether the model could generate HFNAP sequences with experi-
mentally measured binding affinity for daunomycin. We used the
CVAE to generate 10,000 HFNAP sequences, specifying the desired
fitness values in increments of 0.05 ranging from 0.5 to 0.95 and
sampling from the reference set latent distribution. The result was
1000 sequences at each fitness value: 0.5, 0.55,… 0.95, constituting
10,000 CVAE-generated HFNAP sequences for experimental
validation.

To choose sequences for low-throughput binding affinity char-
acterization of individual HFNAPs, we identified groups of generated
sequences with higher levels of sequence similarity. Although the
CVAE sampled randomly from the latent distribution, our previous
experiment demonstrates that CVAE-generated sequences exhibit a
strong preference for amine and alcohol side-chain encoding codons
(Fig. 4e). Any sequence similarities found in the generated sequences
could arise from this codon preference, or represent regions of
increasedmodel confidence that reflect important factors relevant for
daunomycin binding. To determine sequence similarity among the
CVAE-generated sequences, we calculated the pairwise Levenshtein
distance (LD)43,44 between all 10,000 CVAE-generated HFNAP sequen-
ces (Supplementary Fig. 13). Levenshtein distance is the edit distance
between two sequences using insertions, deletions, or substitutions;
low Levenshtein distances indicate high sequence similarity.
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Although most of the CVAE-generated sequences were distinct
and characterized by distances similar to those of randomly sam-
pled HFNAP sequences (Supplementary Fig. 14), 136 sequences
exhibited pairwise LD ≤ 9. It is tempting to speculate that these rare
clusters of increased sequence similarity reflect possible areas of
model confidence. This subset of sequences characterized by
pairwise LD ≤ 9 constituted about 1% of the generated HFNAPs, and
can be further segmented into 128 single-pairs, six double-pairs,
and two triple-pairs. A triple-pair is a generated HFNAP sequence
that is related to three other generated HFNAPs by LD ≤ 9. Because
triple-pairs may reflect local areas of model confidence, we chose
the two triple-pairs (eight sequences total) for further character-
ization. MST characterization indicated that two of these sequences
bound with Kd = 13–15 nM affinity (Fig. 5a and Supplementary
Table 3).

Experimental characterization of daunomycin affinity of CVAE-
generated HFNAPs
To directly compare the binding affinity of CVAE-generatedHFNAPs to
the top experimentally derived sequences from selection 2, we com-
peted them directly in an in vitro daunomycin-binding selection. DNA
templates for the 10,000 CVAE-generated HFNAPs and the top 2000
HFNAPs from the training set with the highest fitness values (compe-
tition set) were translated as amixture into HFNAPs, then subjected to
a single round of high-stringency selection for daunomycin binding.
Analysis of the HTS results indicated that of the 2433 sequences that
had enriched during the selection, 48.6% were from the CVAE-
generated sequences and 51.4% were from the competition set. The
1183 CVAE-generated sequences performed as well as, or better than,
members of the competition set in the single round of high-stringency
selection (Supplementary Fig. 15). We individually translated the five

Fig. 5 | CVAE-generated sequences bind potently to daunomycin yet are
unrelated to experimental sequences. a MST characterization of the binding
affinity of CVAE-generated daunomycin-binding HFNAPs identified directly or with
a single round of high-stringency selection. Sequences were found to bind with
Kd = 13–15 nM and Kd = 9–26 nM respectively. Values and error bars reflect mean
and SEM for n = 3 independent replicates. bUMAPprojection (a non-linearmethod
of dimensionality reduction) of reference set sequences, selection 2 daunomycin-
binding HFNAP sequences, and CVAE-generated daunomycin-binding HFNAP
sequences. 3072 reference-based random sequences and 3072 truly random
sequences were included in the distance matrix and embedding but omitted from
the final UMAP plot for clarity. Reference set sequences form clusters, indicating
sequence similarity. Selection 2 daunomycin-binding HFNAPs, which are sequence
related to the reference set, are found within these clusters. The selection 2
daunomycin-binding HFNAPs used were Dm-HS-1, 2, 3, 6, 7, 8, and 10. Dm-HS-4 and
Dm-HS-5 were omitted for sequence similarity to Dm-HS-1, and Dm-HS-9 was

omitted for sequence similarity to Dm-HS-3. c Aggregate SCI (structure conserva-
tion index) scores for CVAE-generated sequences, reference-based random
sequences, and selection 2 sequences to Dm-HS-1-5 and Dm-HS-9. SCI ≈ 1 indicates
complete conservation and SCI = 0 or less indicates lack of structure conservation.
Many of the top 25 CVAE-generated sequences from the competition selection
demonstrate structure conservation with Dm-HS-1-5 and Dm-HS-9, while structure
conservation is rarer for reference-based random sequences. CVAE-generated
sequences achieve increased numbers of positive SCI scores and larger SCI scores.
Randomly chosen CVAE-generated sequences demonstrate increased structure
conservation to Dm-HS sequences compared to the structure conservation
between randomly chosen reference-based random sequences and Dm-HS
sequences. Median values are indicated using solid black lines. Five sequences with
SCI values < −4 are omitted for clarity. Two CVAE-generated sequences from the
competition selection, two randomly chosen CVAE-generated sequences, and one
reference-based random sequence from the competition selection.

Article https://doi.org/10.1038/s41467-022-31955-4

Nature Communications |         (2022) 13:4541 8



CVAE-generated HFNAP sequences with the highest enrichments for
MST characterization and found them to bind daunomycin with
9–26 nM affinity (Fig. 5a and Supplementary Table 4). These model-
generated, high-affinity binders exceed or match the daunomycin-
binding affinity of experimentally isolated sequences from selection 1
and selection 2 that were subject to competition with ≥1013 variants.
These results show further evidence that the trained CVAE can gen-
erate multiple validated HFNAPs with affinity for daunomycin com-
parable to that of HFNAPs that had survived multiple rounds of high-
stringency selection.

While our primary goal was sequence generation of active
HFNAPs with high daunomycin affinity, the competition selection also
enabled us to explore how our conditioned fitness values relate to
experimentally validated head-to-head enrichment. Assigning accu-
rate fitness condition values for an entire in vitro selection is challen-
ging, as round-to-round enrichments fromHTS data are noisy proxies.
Analysis of the previous head-to-head competition selection indicates
that the correlation between the fitness condition and competition
selection enrichment for the 2000 competition set sequences is 0.16
(Pearson r, p < 0.01, Supplementary Fig. 16). 143 of the 547 sequences
assigned a fitness value of 0.999 did not enrich in this competition
selection, which further supports the stringency of the selection and
the noisiness inherent with enrichment values.

No correlation was found between the fitness condition and the
competition selection enrichment for the 10,000 CVAE-generated
sequences (Pearson r = −0.022, p =0.028, Supplementary Fig. 16). We
reasoned that this may be caused by our choice of fitness condi-
tions > 0.5 when generating the HFNAPs. We therefore conducted an
additional high-stringency, competition selection, using only CVAE-
generated sequences, conditioned on fitness values ranging from
0.001 to 0.999 (see Methods). By competing 12,000 CVAE-generated
HFNAPs without the addition of the competition set, we hoped to
lower the internal selection stringency and observe how HFNAPs
conditioned on low fitness value would perform. Including the com-
petition set would likely prevent enrichment of the majority of the
CVAE-generatedHFNAPs, hindering us fromexploring the relationship
between fitness condition and enrichment. Initial analysis seemed to
indicate that there was a negative correlation between conditioned
fitness and enrichment (Pearson r = −0.627, p < 0.01; Spearman
r = −0.766, p <0.01; Supplementary Fig. 17). However, further analysis
of the negative selection step also demonstrates the same trend,
identifying increased enrichment of CVAE-generated HFNAPs condi-
tioned on low fitness values for the negative selection condition
(Pearson r = −0.642, p < 0.01; Spearman r = −0.708, p <0.01; Supple-
mentary Fig. 17). These results suggest that CVAE-generated HFNAPs
conditioned on low fitness values may be nonspecific binders or only
possess modest affinity.

In contrast, if we filter the 12,000 CVAE-generated HFNAPs for
positive selection enrichments >1 or >2, we see that there is a positive
correlation between conditioned fitness and enrichment (Pearson
renrichment > 1 = 0.198, p = 0.192; Spearman renrichment > 1 = 0.449,
p = 0.0020; Pearson renrichment > 2 = 0.164, p = 0.283; Spearman
renrichment > 2 = 0.399, p = 0.0066; Supplementary Fig. 17). These
results suggest that conditioning on high-fitness values produces
HFNAPs with increased enrichment compared to conditioning on
low fitness values, provided the generated HFNAP is active. Con-
ditioning on high-fitness values is less likely to produce active
HFNAPs, as demonstrated by the decreased percentage of sequen-
ces that enriched >1 or >2 (Supplementary Fig. 17). High-affinity
HFNAPs are rare compared to modest-affinity HFNAPs, making the
decreased frequency of generating active HFNAPs at high-fitness
values consistent with in vitro selection principles. Together, these
findings suggest a complex relationship between fitness and
enrichment where conditioning on low fitness values produces
nonspecific binders ormodest affinity HFNAPs, and conditioning on

high-fitness values produces higher affinity HFNAPs at a
decreased rate.

To ensure that the enrichment of CVAE-generated HFNAPs was
dependent on the model and not simply the observed amine and
alcohol side-chain preference, we randomly sampled from the same
building block frequency distribution as the reference set (the 3072
top-performing sequences from selection 2) to create the reference-
based random set for a competition selection. DNA templates for the
10,000-member reference-based random set and the 2000-member
competition set were translated as a mixture into HFNAPs, then sub-
jected to a single round of high-stringency selection for daunomycin
binding. HTS results revealed that no sequence in the reference-based
random set enriched, with the highest enrichment value being 0.69,
indicating widespread de-enrichment (Supplementary Fig. 18). We
individually translated five sequences with the highest enrichment
values for MST characterization and found none with notable
daunomycin-binding activity (all had Kd ≥ 10 µM) (Supplementary
Fig. 19). This result indicates that the building block distribution alone
is not sufficient to confer daunomycin-binding activity, and that the
affinity of the CVAE-generated sequences is indeed the result of the
model having learned a useful representation of the daunomycin fit-
ness landscape.

CVAE-generated active HFNAP sequences are unrelated to
reference set sequences
Understanding the global fitness landscape is critical to achieving
multi-objective optimization for properties such as stability, binding
affinity, and selectivity. To populate unknown regions of the global
fitness landscape, CVAE-generated sequences should be unrelated to
known sequences. Establishing the degree of dissimilarity between
CVAE-generated active sequences and subsets of the training data also
demonstrates whether the model has learned a fitness landscape that
is distal to the local fitness landscape identified from selection 2. Here,
we use Levenshtein distance and dimensionality reduction to deter-
mine if CVAE-generated HFNAP sequences are dissimilar to the refer-
ence set, establishing that the CVAE had learned sequence
determinants of daunomycin activity beyond sequence similarity to
reference set sequences, and also dissimilar to each other, establishing
that theCVAEwas capable of identifying diverse anddistinct regions of
active sequence space.

To determine whether the CVAE-generated daunomycin-binding
HFNAPs are related to the reference set, we used the Levenshtein
distance as ourmetric of sequence similarity and visualized sequences
in two dimensions using dimensionality reduction by UMAP45. The
UMAP plot visually demonstrates that the seven validated CVAE-
generated HFNAP sequences are dissimilar from the reference set, as
they remain separated from the clusters (Fig. 5b). In contrast, the seven
validated selection 2 sequences are found within large clusters, indi-
cating sequence similarity resulting from selection-induced sequence
convergence. The distribution of Levenshtein distances to the refer-
ence set can be visualized directly, where we observe the seven CVAE-
generated daunomycin-binding HFNAPs are separated from all 3072
reference set sequences by a Levenshtein distance of 15 or more
(Supplementary Fig. 20, mean LDreference set = 22.9 ± 1.21, n = 7) and
from all training sequences by a Levenshtein distance of 12 or more
(Supplementary Fig. 21, mean LDtraining set = 23.20± 2.05, n = 7), indi-
cating large dissimilarity. The distance distribution from CVAE-
generated sequences to the reference set are similar to ones from
seven reference-based random HFNAP sequences to the reference set
(mean LDreference set = 24.1 ± 0.78, n = 7) and from seven truly random
HFNAP sequences to the reference set (1/32 building block distribu-
tion, mean LDreference set = 24.9 ± 0.64, n = 7), with the closest sequence
being 17 and 16 LD away, respectively (Supplementary Fig. 20). In
contrast, 39% of the reference set is within a Levenshtein distance of
only 1–2 to at least one of the seven validated selection 2 daunomycin-
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binding HFNAPs, an expected result of selection-induced sequence
convergence (Supplementary Fig. 20, mean LDreference set = 20.2 ± 1.90,
n = 7). These data demonstrate that the CVAE-generated daunomycin-
binding HFNAPs are unrelated to the reference set, and provides fur-
ther support that the model has learned the daunomycin-binding fit-
ness landscape distal to the local fitness landscape from selection 2.

Lack of broad sequence similarity to the reference set is main-
tained, even when considering all 10,000 CVAE-generated sequences.
We began by calculating Levenshtein distances to the reference set
from 10,000 training set sequences, 10,000 CVAE-generated sequen-
ces, 10,000 reference-based random sequences, and 10,000 truly
random sequences (Supplementary Figs. 22-23). Distancedistributions
from the reference-based random sequences and truly random
sequences to the reference set are representative of broad sequence
dissimilarity that is derived from their random sampling. If the
Levenshtein distances from the 10,000 CVAE-generated sequences to
the reference set are similar to what is observed in the two random
controls, then overall CVAE-generated sequence similarity to the
reference set should be minimal. To assess similarity of the distance
distributions, we calculated the Jensen-Shannon (JS) distance46,47, a
metric of similarity between two probability distributions where low
values reflect increased similarity. We find that CVAE-generated
sequences are dissimilar to the reference set, as its Levenshtein dis-
tance distribution to the reference set is similar to those of the two
random controls: reference-based random sequences (JS distance =
0.160) and truly random sequences (JS distance = 0.249). In contrast,
the top 10,000 training set sequences aremore similar to the reference
set, as indicated by the presence of low Levenshtein distance values
and the larger JS distances to the two random controls: reference-
based random sequences (JS distance =0.258) and truly random
sequences (JS distance =0.321). Additionally, the closest Levenshtein
distances for the 10,000 reference-based random sequences and the
10,000 truly random sequences to the reference set are 11 and 12,
respectively (Supplementary Fig. 22).We find that only 16 and 43 of the
10,000 CVAE-generated sequences exhibit Levenshtein distances to
the reference set that are <11 or <12, respectively. The dissimilarity
between CVAE-generated HFNAPs and the reference set indicates the
model is likely generating HFNAPs based on an understanding of the
broad fitness landscape, rather than relying on sequence similarity to
the reference set.

CVAE-generated active HFNAPs explore distinct regions of the
global fitness landscape
To assess whether the validated CVAE-generated daunomycin-binding
HFNAPs arederived froma single localfitness landscape as opposed to
different areas of the global fitness landscape, we compared the pair-
wise Levenshtein distances within groups of HFNAPs. The seven vali-
dated CVAE-generated daunomycin-binding HFNAPs have a median
pairwise distance of 23 LD. Because the distance distribution of Dm-
HS-1-7 would be skewed by Dm-HS-4-5 (point mutants of Dm-HS-1), we
chose to examine experimental sequences Dm-HS-1-3, Dm-HS-6-8, and
Dm-HS-10 (Dm-HS-9 omitted for similar reasons), and found a median
pairwise distance of 21 LD (Supplementary Fig. 24). To determine if
there are significant differences in median pairwise distances between
groups of sequences, we analyzed the pairwise distance distributions
using permutational analysis of variance (PERMANOVA)48. PERMA-
NOVA establishes the statistical significance of the larger median
pairwise distances between the seven validated CVAE-generated
HFNAPs (LD = 23) compared to the seven selection 2 HFNAPs (LD =
21), as indicated by larger pseudo F statistic values (pseudo F = 1.531,
p =0.0494) (Supplementary Fig. 24), which provides supporting evi-
dence that validated CVAE-generated HFNAPs sample broader
sequence space compared to the validated selection 2 HFNAPs. Fur-
thermore, pairwise distances are also a measure of sequence diversity,
and we find the sequence diversity of the seven CVAE-generated

HFNAPs to be similar to that of the seven reference-based random
sequences (pseudo F = 1.001, p =0.485). In contrast, the selection 2
HFNAPs differ significantly from the reference-based random
sequences (pseudo F = 1.674, p = 0.0234), although part of the effect
may be attributed to heterogenous dispersions (p =0.0458) (see
Methods). These results suggest that the model produces active
HFNAPs with sequence diversity exceeding what we obtained from
in vitro selection. Extending the pairwise distance calculations to all
10,000 CVAE-generated HFNAPs, we observe similar relationships
qualitatively (Supplementary Fig. 25). The pairwise distance distribu-
tion between the validated CVAE-generated daunomycin-binding
HFNAPs exhibits sequence diversity exceeding that of experimentally
derived sequences from in vitro selection, which further demonstrates
that the CVAE is able to access distinct areas of the fitness landscape.

CVAE-generated and in vitro selected HFNAPs share similar
predicted secondary structures
To begin to understand the CVAE’s ability to generate active,
daunomycin-binding HFNAPs despite the lack of sequence similarity
with HFNAPs from the in vitro selection, we analyzed the predicted
secondary structures of various HFNAP-DNA backbone sequences
using the DNA parameter set in RNAstructure49. While structure pre-
diction for HFNAPs is more difficult as the side-chains can influence
HFNAP secondary structure and folding16, similar secondary structure
elements have been observed in modified nucleic acid polymers50. As
expected, given that Dm-HS-1 was highly enriched and the dominant
family of sequences in our in vitro selection, several of the most enri-
ched CVAE-generated HFNAPs from the competition selection (Dm-
CCS variants) had predicted structures with qualitative structural
similarities with the predicted structures of Dm-HS-1 (Supplementary
Figs. 26-27). Using RNAdistance51,52, we calculated that Dm-CCS-3
structure 2 was 24 base-pair-edit distance away from the Dm-HS-1 MFE
(minimum free energy) structure, and the Dm-CCS-5 MFE structure
was 30 base-pair-edit distance away from Dm-HS-1 structure 3. These
smaller base-pair-edit distances were relatively rare, as indicated by
our expanded base-pair-edit distance analysis of the top 25 CVAE-
generated sequences and reference-based random sequences from
the competition selection, and 25 randomly chosen sequences from
each of these sequence sets (Supplementary Fig. 28). These initial
structural similarities between validated, daunomycin-binding CVAE-
generated HFNAPs and Dm-HS-1 prompted us to fully characterize the
extent of structural similarity between CVAE-generated and experi-
mental sequences.

To determine if predicted structures were similar, we calculated
the structure conservation index (SCI)53 (see Methods). SCI score has
been used as the standard metric for structure conservation and
structure similarity54,55, whereas base-pair-edit distance has been
shown to be a less reliable metric, especially if sequences have limited
sequence similarity54. SCI scores near or below 0 indicate lack of
structural similarity and SCI ≈ 1 indicates complete structural con-
servation. We calculated the SCI scores from Dm-HS-1-10 to the top 25
CVAE-generated sequences from the competition selection, top 25
reference-based randomsequences from the competition selection, 25
randomly chosen CVAE-generated sequences, 25 randomly chosen
reference-based random sequences, and the top 25 most enriched
selection 2 sequences. The aggregate results are shown in Supple-
mentaryFig. 29.Weobserved that theCVAE-generated sequences have
increased structural similaritywith some (Dm-HS-1-5 andDm-HS-9) but
not all of the Dm-HS sequences, as indicated by the presence of
increased number of structures with positive SCI scores than in the
reference-based random sequences, along with the larger SCI scores
(Fig. 5c, and Supplementary Figs. 30 and 31). Both the CVAE-generated
sequences from the competition selection and randomly chosen sets
demonstrate this increased structural similarity when compared to the
reference-based random sequences, indicating that the structural
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similarities observed are a function of the CVAE sequence generation
and not just a consequence of the selection process.

The selective structural similarity is likely a result of Dm-HS-1-3
dominating the high-fitness training data. Dm-HS-1-5 and Dm-HS-9
represent the three major families from selection 2, as Dm-HS-4-5 are
point mutants of Dm-HS-1 and Dm-HS-9 is a point mutant of Dm-HS-3.
Of the 1000 selection 2 sequences with the highest assigned fitness
values (fitness > 0.4666), 42.9% are within LD 1–2 of Dm-HS-1-3. The
observed increase in structural similarity between CVAE-generated
sequences and these three major families is therefore likely a product
of our specific training data. As a result, the overrepresentation of
these related sequences as high-fitness sequences likely resulted in a
strong contribution to the CVAE’s understanding of daunomycin
binding.

To probe if Dm-HS-1-3 or any top Dm-HS sequence contributes to
CVAE sequence prediction, we first analyzed our selection 2 HTS data
using AptaTrace to identify potential motifs. AptaTrace is a compu-
tational method for identifying sequence-structure motifs based on
motif-induced selection trends56. To determine if any of the potential
motifs were selectively enriched in CVAE-generated sequences, we
used Sequenceserver to run Basic Local Alignment Search Tool
(BLAST) on custom BLAST databases created from our 10,000 CVAE-
generated sequences and 10,000 reference-based random
sequences57,58. We identified threemotifs thatwere overrepresented in
the 10,000 CVAE-generated sequences compared to the 10,000
reference-based random sequences (Supplementary Fig. 32). For a
given E-value, the number of expected alignments that would occur
based on chance given the number and length of sequences in the
database, thesemotifs were identified in CVAE-generated sequences at
least ≥2.66-fold more often than in reference-based random sequen-
ces, with the exception of motif 2 (E-value 0.18). These results suggest
that the CVAE learned the importance of including motifs 1-3 for pre-
dicting sequences with high affinity.

To better understand the CVAE’s insertion of these motifs in
predicted HFNAP sequences, we characterized motifs 1-3 in the CVAE-
generated sequences by comparing motif positioning and the pre-
dicted structural similarity to the corresponding Dm-HS sequence.
Motif 1, which can be found in Dm-HS-10, is positioned at the begin-
ning of the HFNAP coding region in selection 2 round 8b sequences
(Supplementary Fig. 33). When we compared where this motif was
found in the 10,000 CVAE-generated sequences (12 instances) and
10,000 reference-based random sequences (10 instances), we
observed that CVAE-generated sequences containing motif 1 had also
positioned the motif at the beginning of the HFNAP coding region.
Reference-based random sequences containing motif 1 were dis-
tributed throughout the coding region with a slight increase near the
center of the coding region. A similar pattern is observed for motif 2,
found in Dm-HS-5.Motif 2 is positioned at the end of the coding region
in selection 2 round 8b sequences, which matches where the motif 2
was most commonly found in the 103 CVAE-generated sequences
containing motif 2. Motif 3, found in Dm-HS-8, is centered in the
HFNAP coding region of selection 2 round 8b sequences (position 16-
27). While the 130 CVAE-generated sequences containing motif 3
achieve a similar centering, the exact positions differs, with the
majority of CVAE-generated sequences incorporating motif 3 at posi-
tion 25-36. The 26 reference-based random sequences incorporating
motif 3 are again distributed throughout the coding region. Surpris-
ingly, we were able to identify one CVAE-generated sequence that
combinesmotif 2 and 3with a 3 bp overlap (BLAST E-value 8.60 × 10−5).
This 18 bp combined motif is not found in any training data sequence.
Three sequences contain a 15 bp sequence thatmatches the combined
motif (BLAST E-value 6.31 × 10−2), one of which is in the general-fitness
test set and was not used for model training. While the sequence did
not enrich in the competition selection, this finding demonstrates the
ability of the CVAE to combine motifs. The positional matching of

thesemotifs in CVAE-generated sequences is supporting evidence that
theCVAE has identified specificmotifs to incorporatewhen generating
high-affinity HFNAPs.

We then calculated SCI scores to determine whether the top 50
CVAE-generated HFNAPs incorporating these motifs had increased
structural similarity to the correspondingDm-HS sequence. The top 50
CVAE-generated sequences containing motif 1 (by BLAST bitscore)
were found with increased structural similarity to Dm-HS-10, com-
pared to the top 50 reference-based random sequences containing
motif 1, 50 randomly chosen CVAE-generated sequences, or 50 ran-
domly chosen reference-based random sequences (Supplementary
Fig. 34). SCI scores for motif 2 and 3 produced similar findings. These
results are surprising given that incorporation of the 12-13mer motif
sequence does not translate directly to structural similarity for the
81mer sequence. The combined evidence of CVAE-generated sequen-
ces containing motifs 1-3 exhibiting structural similarity to the corre-
spondingDm-HS sequences andpositionalmatchingof thesemotifs to
selection 2 round 8b sequences further suggests the CVAE has learned
to incorporate important motifs when generating HFNAPs.

Importantly, these structural similarities are present despite the
lack of broad sequence similarity. Supplementary Figs. 30 and 31 plot
the LD from Dm-HS-1-10 to 25 CVAE-generated sequences, reference-
based random sequences, and selection 2 sequences. Herewe observe
that only selection 2 sequences exhibit low LD values, indicating
sequence similarity. There is limited sequence similarity between Dm-
HS-1-10 and the top 25 CVAE-generated sequences from the competi-
tion selection, the top 25 reference-based random sequences from the
competition selection, the 25 randomly chosen CVAE-generated
sequences, or the 25 randomly chosen reference-based random
sequences. Collectively, these results suggest how structure similarity
to the three major families from selection 2 is a partial contributor for
CVAE model performance. By training on the sequence and fitness
data, the CVAEmay indirectly identify structuralmotifs that contribute
tofitness, anduses these learnedmotif representations in at least some
cases to generate sequences with high daunomycin-binding activity.

Discussion
Insights into the global fitness landscape of proteins, nucleic acids and
other functional sequence-defined polymers promote the accurate
prediction of high-fitness sequences and a broader understanding of
their binding interactions. While in vitro selections are an efficient
method for exploring large areasof sequence space, selection-induced
sequence convergence and limited sequencing depth constrain the
characterization of fitness landscapes to the few regions containing
sequences that survived multiple rounds of selection and that were
successfully synthesized. While additional rounds of in vitro selection
could, in principle, enable access to a larger area of sequence space,
this solution is costly in terms of time and resources. In contrast to
performing several rounds of in vitro selection, machine learning
models can be trained to make accurate predictions about the
sequence space, even when data is limited. These models could then
expand the sequencediversity of known active sequences and enable a
fuller characterization of the fitness landscape of functional sequence-
defined polymers.

In the present study, we trained a generative machine learning
model on HFNAP in vitro selection data in order to generate diverse
HFNAPs with high binding affinity for the small-molecule daunomycin.
By leveraging the chemical functionality of HFNAPs and improving
selection conditions, we produced a dataset of 105 experimental
sequences. We assigned fitness values to the sequences based on their
enrichment during in vitro selection and trained a conditional varia-
tional autoencoder (CVAE), a type of generative machine learning
model. Although active sequences were far outnumbered by inactive
sequences, the CVAE learned the joint probability distribution
between sequence identity and binding affinity and then directly
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generated HFNAPs with potent daunomycin-binding affinities. Impor-
tantly, the CVAE-generated sequences were unrelated in sequence to
experimentally identified activeHFNAPs, and a competition selection
demonstrated that select CVAE-generated sequences performed as
well as or better than sequences emerging from multiple rounds of
high-stringency in vitro selection. While daunomycin-binding
HFNAPs from the in vitro selection and CVAE-generated sequences
fold into a variety of different predicted structures, secondary
structure analysis suggests that the CVAE’s understanding of the
daunomycin-binding fitness landscape is supported in part by its
ability to generate secondary structures resembling those of Dm-HS-
1-3. The lack of sequence similarity toDm-HS-1-3, despite the fact that
these three sequence families were major components of the high-
fitness sequences, highlights the sequence diversity of CVAE-
generated sequences. As a result, CVAE sequence generation can
counteract the sequence convergence typical of traditional in vitro
selections, while maintaining high on-target activity. Our method
expands the sequence diversity of sequences, thereby increasing the
likelihoodof identifying candidate sequenceswithdiverseproperties
including those thatmay not have been explicitly selected, but which
are desirable. For example, increasing levels of backbone and 2'-
position modifications usually reduces on-target activity59,60, but
having diverse sequences increases the probability of identifying
sequences amenable to chemical modification. Collectively, these
results demonstrate that generative machine learning models can be
used to generate active polymer sequences and reduce the number
of in vitro selections required to discover diverse and highly active
variants.

Researchers in the life sciences are increasingly recognizing the
power of machine learning models to make predictions about biolo-
gical data61,62 and to improve protein function by efficiently exploring
fitness landscapes24,27. Notably, Biswas and colleagues have made
impressive progress in successfully limiting the amount of data a
model needs to be trained on to achieve predictive power27. Pre-
training models on the ~24 million UniRef50 amino-acid sequences
allows them to learn fundamental features necessary for protein
function. The resulting models can then be fine-tuned using <100
functional variants of the desired protein, minimizing the amount of
labeled data that needs to be individually characterized. Additionally,
Stokes and co-workers showed that message passing neural networks
trained on small molecules can guide drug discovery by making pre-
dictions on new, unrelated compounds61. Both of these examples
illustrate the importance of training on useful datasets to achieve
sufficient predictive power. We anticipate that advances in model
construction and training will only continue to improve researchers’
abilities to generate useful predictions that can outperform training
examples.

More broadly, this work demonstrates that integrating in vitro
selection with machine learning can help researchers explore a much
larger swath of a polymer’s total sequence space than would be pos-
sible from in vitro selections alone. The improved sequence and
structural diversity that can result from such an exploration increases
the likelihood of accessing polymers with properties suitable for bio-
technological or therapeutic applications, such as amenability for
post-selection chemicalmodifications that can have varying sequence-
and structure-dependent effects on binding affinity63. Traditional
in vitro selections use only a small fraction of information-rich HTS
data to identify enriched clones and putative consensus sequences. In
contrast, the integrated in vitro selection and machine learning
approach developed here makes better use of this information and
may enable the discovery of active sequences that survive difficult
selection criteria with few solutions. Our approach may also facilitate
the generationof synthetic polymer catalysts with activities not known
among previously described biopolymers.

Methods
General methods
Oligonucleotides were purchased from IDT and are listed in the Sup-
plementary Information. Building blocks were synthesized as descri-
bed previously16,21. Building blocks were synthesized either directly
fromphosphoramidites (Glen Research) or via coupling of an amine to
theNHS ester containing phosphoramidite as described previously16,21.
T3 DNA ligase, ATP, and T4 RNA ligase buffer were purchased from
New England BioLabs. MyOne Streptavidin C1 magnetic beads (Life
Technologies) were used in immobilization. MST samples were pre-
pared using HBS-P + buffer (GE Healthcare Life Sciences).

Synthesis of HFNAP libraries by DNA-templated translation
DNA template libraries (125 pmol), initiation primer (188 pmol), ter-
mination primer (188 pmol), monomer mix (1.25 nmole/monomer),
and 13 µL of water were mixed and added to a PCR strip. Strips were
then incubated at the following temperatures using a thermal cycler:
95 °C for 10 s, 65 °C for 4min, followed by a 0.1 °C per 10 s ramp to
4 °C. 6.25 µL of ATP and 6.25 µL of T3 DNA ligase were then added at
4 °C, and then incubated for 16 h at 4 °C.

250 µL of streptavidin beads were then prepared by washing in
B&Wbuffer according tomanufacturer protocol. The beads were then
changed into 125 µLof 2×B&W (20mMTris-HCl, 2MNaCl, 2mMEDTA,
pH 7.5). The translation reaction was then combined with the strep-
tavidin beads andmixed for 1 h on a rotarymixer. The supernatant was
discarded, and beads were washed thrice to remove nonspecific bin-
ders. The HFNAP strands were then selectively eluted from the bioti-
nylated template using two 5-min washes with 250 µL of freshly
prepared 20mM NaOH. The combined elution was mixed with 5
volumes of column-binding buffer (2:3 sat. aq. guanidine•HCl:isopro-
panol, 1% v/v 3M NaOAc, 0.1% pH indicator). The combined sample
was then column purified using a QiaPrep 2.0 column and eluted with
52 µL of EB (Qiagen). A 1-µL aliquot was saved as the pre-selection
library.

Subsequent rounds of translation require streptavidin bead
immobilization of double-stranded DNA templates and 20mM NaOH
washes to obtain ssDNA templates for translation. Beads are then
washed twice with T4 RNA ligase buffer to neutralize any remaining
base before proceeding with synthesis and translation as usual. These
bead immobilized templates are then used in lieu of in solution
templates.

Synthesis of individual HFNAPs by DNA-templated translation
Synthesis of individual HFNAPs follows a similar protocol as library
synthesis. Themajor difference is use of 10 equivalents of the building
blocks for each HFNAP as opposed to a master mix. Following trans-
lation, HFNAP isolation and elution, and column cleanup, the sample is
then PAGE purified on a denaturing 10% TBE-Urea gel (Criterion, Bio-
Rad). The band is visualized by UV shadowing, where DNA bands were
identified by the shadow cast by DNA onto a TLC plate with F254
indicator when the gel was illuminated by a UV lamp. The bands were
excised from the gel and extruded through stacked microcentrifuge
tubes (0.2mL, 0.5mL, 1.5mL), with 17 gauge and 27 gauge holes made
in the first two tubes respectively. The resulting material was then
resuspended in 400 µL of Crush Soak (1× TE, 200mM NaCl), and then
shaken overnight at 37 °C.

The gel pieces were then removed using 0.22 µmPVDF centrifugal
filters (Millipore). The remaining liquid was then combined with 5×
equivalents of column-binding buffer, DNA column purified, and
eluted with water.

Synthesis of positive and negative selection targets
Biotinylated daunomycin was synthesized by reacting EZ-Link Sulfo-
NHS-SS-Biotin (Thermo Scientific) with daunomycin (Selleckchem)33.
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The product was HPLC purified, and concentration determined
by A260.

The negative selection target, Me-SS-Biotin, was prepared
according to the following procedure. The reaction was conducted
under N2 atmosphere. EZ-Link™ Sulfo-NHS-SS-Biotin (ThermoFisher
Scientific) (31.0mg, 0.0511mmol) was weighed directly into an oven-
dried vial sealed with a Teflon septum and containing a magnetic stir
bar. The vial was cooled to 0 °C, and 10mL of 2M methylamine in
methanol was added to the vial dropwise. The reaction mixture was
allowed towarm to room temperature slowly and stirred for 24h. After
this time, the solvent and excessmethylamine were removed in vacuo.
The crude reaction mixture was dissolved in 30/70 acetonitrile:water
and purified by reverse phase HPLC (0/100 to 30/70 of acetonitrile/
water with 0.1% trifluoroacetic acid). The product was lyophilized
overnight before further use.

1H NMR (400MHz, CD3OD) δ 4.521(ddd, J = 8, 4.8, 1.2 Hz, 1H),
4.336 (dd, J = 8, 4.4Hz, 1H), 3.509 (t, J = 6.8Hz, 2H), 3.239 (ddd, J = 10.4,
4.4, 4Hz, 1H), 2.979 (t, J = 8Hz, 2H), 2.960 (dd, J = 14, 4.8Hz, 1H), 2.856
(t, J = 5.2 Hz, 2H), 2.755 (s, 3H), 2.738 (d, J = 14Hz, 1H), 2.615 (t, J = 7.2 Hz,
2H), 2.250 (t, J = 7.6Hz, 2H), 1.695 (m, 4H), 1.479 (p, J = 7.6Hz, 2H).

13C{1H} NMR (151MHz, CD3OD) δ 177.09, 175.15, 166.99, 64.24,
62.50, 57.85, 41.90, 40.37, 39.41, 37.59, 37.43, 36.05, 30.60, 30.33,
27.67, 27.24.

MS (ESI):m/z for C16H28N4O3S3 [M +TFA-H]−1 calcd.: 533.12, found:
533.14 (see Supplementary Note 2).

Daunomycin affinity selection
Daunomycin-linked beads and negative selectionbeadswere prepared
prior to the start of each selection round. Streptavidin-linked beads
were washed with B&W according to manufacturer protocol, then
incubated with biotinylated daunomycin or the negative selection
linker (see Methods) for 1 h. The beads were then washed in selection
buffer (20mMTris-HCl (pH 7.4), 140mMNaCl, 5mMKCl, 1mMMgCl2,
1mMCaCl2, 0.05% [v/v] Tween 20) thrice, and then resuspended in 2×
selection buffer.

The selection began with incubation of column purified HFNAP
libraries with immobilized daunomycin on streptavidin-linked beads.
The selection was placed on a rotary mixer for 1 h. The flow-through
was then collected, the beads washed 3× using selection buffer, and
finally putative binders were eluted according to the scheme in Fig. 2a.
When eluting with 1mM daunomycin, the beads were washed twice
with selection buffer after the initial incubation with daunomycin. The
combinedmaterial constitutes the elutedmaterial. The elutedmaterial
was then mixed with 5× equivalents of column-binding buffer, DNA
column purified and eluted with water.

Selections started with a negative selection after round 4. The
column-purified HFNAP libraries were mixed with negative selection
beads on a rotary mixer for 30min. The flow-through was then col-
lected, and mixed with positive selection, daunomycin-linked
beads for 1 h.

A 1-µL aliquot of each sample was analyzed by qPCR using Q5 Hot
Start High Fidelity 2× Master Mix (New England BioLabs) and 0.5×
SYBR Green I (Life Technologies). The qPCR cycle number was used to
determine the number of cycles of amplification for the eluted mate-
rial. The eluted material was amplified by PCR using Q5 Hot Start High
Fidelity 2× Master Mix (New England BioLabs), and a primer set in
which one of the primers was biotinylated. The resulting PCR reaction
was thenDNA column-purified using 5× equivalents of column-binding
buffer, and eluted with water.

The elutedmaterial was then gel purified in a 10%TBE native PAGE
gel (Criterion, Bio-Rad). The gel was visualized by UV shadowing,
where DNA bands were identified by the shadow cast by DNA onto a
TLC plate with F254 in which when the gel was illuminated by a UV
lamp. The bands were excised from the gel and extruded through
stacked microcentrifuge tubes (0.2mL, 0.5mL, 1.5mL), with 17-gauge
and 27-gauge holes made in the first two tubes respectively. The
resulting material was then resuspended in 400 µL of Crush Soak (1×
TE, 200mM NaCl), and then shaken overnight at 37 °C.

The gel pieces were then removed using 0.22 µmPVDF centrifugal
filters (Millipore). The remaining liquid was then combined with 5×
equivalents of column-binding buffer, DNA column purified, and
eluted with EB. The absorbance was then measured to determine the
concentration of the eluent, for subsequent rounds of translation.

High-stringency selection scheme
The two main differences for the high-stringency selection scheme
were the selection temperature and the elution conditions. The posi-
tive and negative selections were both performed at 37 °C, with an
initial 2-min incubation in a thermocycler to rapidly raise the tem-
perature of the selection to 37 °C prior to incubation on a rotary mixer
in a 37 °C warm room. The elution condition was then modified to
containmultiple washes with 1mMdaunomycin, followed by 2 washes
with selection buffer. The incubation times and the elution that was
carried forward to the next round of selection are shown in Fig. 2a.

HTS analysis of libraries
Samples to be analyzedwere amplifiedby PCRusingQ5Hot StartHigh-
Fidelity 2× Master Mix to install Illumina sequencing adapters, with
amplification cycle number determined by qPCR. Samples were then
DNA column purified, followed by an additional PCR round to install
Illumina barcodes. The resulting samples were then combined, DNA
column purified, and the concentration was determined by Kapa
Library Quantification Kit (Kapa Biosystems). Fastq files were then
parsed using AptaSuite, setting a strict cutoff for full-length
sequences64. The parsed sequences were exported through Apta-
Suite in Fastq format, and subsequently converted into csv’s for
downstream analysis.

Microscale Thermophoresis (MST)
MST analysis was conducted using a Monolith NT.Automated (Nano-
temper). Analyses were conducted at 25 °C in HBS-P + buffer (Cytiva/
GE Healthcare Life Sciences) with additional 5mM KCl, 1mM MgCl2,
and 1mM CaCl2. Sequences were translated using a Cy5 tag and
PEG18 spacer, for use in tracking the HFNAP. Generally, the laser
excitation energy was set to 10 % tominimize photobleaching, and the
IR laser power was set to high for all readings.

Dilution series for each replicate wasmade separately, using serial
dilutions from the highest concentration to the lowest concentration.
The amount of labeled HFNAP that was used was subsaturating, as
determined by fluorescence intensity measured against a known
standard. Measurements were made in triplicate. Data was processed
and fitted using standard Nanotemper software (MO.Affinity) and
exported to Prism for plotting.

Gel filtration
Gel filtration was conducted using [3H]-daunomycin, from Perkin-
Elmer or American Radiolabeled Chemicals65. Analyses were con-
ducted at 25 °C in selection buffer (20mM Tris-HCl (pH 7.4), 140mM
NaCl, 5mMKCl, 1mMMgCl2, 1mMCaCl2, 0.05% [v/v] Tween 20). 25 µL
of a 40 nM solution of theHFNAP in selection buffer wasmixed 1:1with
25 µL of serial dilutions of radiolabeled daunomycin. The initial dau-
nomycin mixture was made by mixing [3H]-daunomycin with non-
radiolabeled daunomycin, followed by 1:1 serial dilution with selection
buffer. Samples were incubated in the dark at 25 °C for at least 30min.
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During incubation, Centri-Sep gel filtration column (Princeton
Separations catalog number CS-901) were prepared according to
manufacturer instructions by reconstituting with selection buffer. The
50 µL reaction was loaded onto the prepared Centri-Sep columns,
followed by centrifugation according to manufacturer instructions.
The resulting flow-through was pipetted into 5mL of Ultima Gold
(Perkin-Elmer) in a scintillation vial, vortexed, and counted using a Tri-
Carb 2910 TR liquid scintillation counter. The process was conducted
in parallel with an unrelated sequence from a different selection
against a different target (gel filtration control sequence). Fraction
boundbyDm-HS-1was calculated by taking the difference between the
amount of [3H]-daunomcyin boundbyDm-HS-1 and the amount bound
by the control sequence.

PERMANOVA
Permutational multivariate analysis of variance was conducted using
the scikit-bio package. A symmetric matrix of precomputed Levensh-
tein distances between two groups of seven sequences was used as the
distance matrix. Comparisons were first tested for heterogenous dis-
persions using the permdisp function (permutations = 1000, test =
centroid), repeated ten times, and taking the average p-value. PER-
MANOVA was then applied using the permanova function, (permuta-
tions = 1000) 1000 times, and the average p-value was reported.

SCI scores
Structure conservation index (SCI) is defined by the equation:

SCI = Econs=
�Esingle

Where Econs is the consensus sequence MFE, and �Esingle is the average
MFE of individual sequences. SCI scores were calculated by first con-
ducting a structural alignment of sequence pairs using multilign66, a
package in RNAstructure49. The aligned sequences were then passed
through RNAalifold to calculate Econs

55,67–69. The individual MFEs were
then calculated using RNAeval54, using the individually folded, pre-
dicted structures from RNAstructure.

Base-pair-edit distance
Base-pair-edit distance was calculated between sequences by con-
verting predicted structures from CT files to dot-bracket notation
using RNAstructure. Sequences in dot-bracket notation were then
compared using RNAdistance51,52.

Motif position mapping
Using AptaTrace56 sequence-structural motifs from selection 2 were
identified and aligned against the 10,000 CVAE-generated sequences
and the 10,000 reference-based random sequences using BLAST. The
aggregate aligned positions are plotted using a cutoff bitscore (80% of
the highest value found in the CVAE-generated sequences).

Pearson correlation and spearman correlation
Correlations were calculated using GraphPad Prism version 9 for
MacOS, GraphPad Software, San Diego, California USA, www.
graphpad.com. Two-tailed p-values were reported.

Machine learning model
To gain further insight into the fitness landscape of daunomycin
binding, we applied deep learning techniques to model the HFNAP
sequences from selection 2.

Training dataset
The training dataset was constructed from HTS analysis of the high-
stringency selection, round 4 through round 8b. To begin, the five
rounds of selection 2 were subject to HTS, resulting in sequence
abundances (counts) for each round of the selection. To account for

differences in sequencing read depth for each of these rounds, and to
normalize the number of reads per sample, we bootstrapped the
sequence abundances. Data for each round was randomly sampled 1
million times with replacement, and this process was iterated 1000
times to calculate bootstrapped sequence abundances. The rounds
were then combined to create the training dataset, where each row is a
single, unique sequence, and each column is the normalized sequence
abundance for that sequence in that round. Missing values were
assigned an abundance of 1.

The fitness value was then calculated by dividing the round 8b
abundance by the round 4 abundance, and then dividing the resulting
enrichment valueby 20. A ceilingwas introduced such that enrichment
values greater than 1 were then adjusted to 0.999. This gave us
~2000 sequences with fitness greater than 0.25, which seemed to align
with what we might expect given the sequence similarities within the
top 2000 sequences. Fitness values were not corrected for HFNAP
translation biases because improved translation characteristics can be
a positive side effect of HFNAP in vitro selection. These translation
biases arise largely from ligase sequence preferences, side-chain
induced translation, or reverse translation biases23. Previous work has
demonstrated that HFNAP sequences are recovered faithfully during
reverse translation16,21,23. The 256-member high-fitness test set was
chosen by ranking the sequences by enrichment (round 4 to round
8b). Every other highest-ranking sequence was included in the high-
fitness test set, which prevented withholding the best 256 sequences
from the data.

Model construction and training
To learn the relationship between HFNAP sequence space and dau-
nomycin binding, we begin by positing that the relationship is a
function of a hidden (latent) variable z. To learn the posterior dis-
tribution pðz∣xÞ over the latent z, we can apply Bayes' Theorem given
our observed data x.

pθ z∣xð Þ= pθ x∣zð Þpθ zð Þ
p xð Þ =

pθðx,zÞ
pðxÞ ð1Þ

However, computing pθ xð Þ is intractable because it scales expo-
nentially with the size of the latent space.

pθ xð Þ=
Z

pθ x,zð Þdz=
Z

pθ x∣zð ÞpθðzÞdz ð2Þ

Instead, we can use variational inference to approximate the
posterior pθ z∣xð Þ, resulting in a variational distribution q with para-
meters ϕ40,70.

pθ z∣xð Þ≈ qϕðz∣xÞ ð3Þ

Because approximation qϕðz∣xÞ and pθ x,zð Þ are tractable, we can
find the marginal likelihood of pθ xð Þ.

log pθ xð Þ=Eqϕ z∣xð Þ logpθ xð Þ� �

=Eqϕ z∣xð Þ log
pθ x,zð Þ
pθ z∣xð Þ

� �� �

=Eqϕ z∣xð Þ log
pθ x,zð Þ
qϕ z∣xð Þ

" #" #
+Eqϕ z∣xð Þ log

qϕ z∣xð Þ
pθ z∣xð Þ

� �� �

=Lθ,ϕðxÞ+DKL qϕ z∣xð Þ∣∣pθ z∣xð Þ
� �

ð4Þ

The first term is the evidence lower bound (ELBO), and the
second term is the Kullback-Leibler (KL) divergence. Because
the KL divergence is always non-negative, the ELBO becomes
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the lower bound of logpθ xð Þ.

Lθ,ϕ xð Þ= logpθ xð Þ � DKL qϕ z∣xð Þ∣∣pθ z∣xð Þ
� �

Lθ,ϕ xð Þ≤ logpθ xð Þ � DKL qϕ z∣xð Þ∣∣pθ z∣xð Þ
� � ð5Þ

Therefore, maximizing the ELBO will simultaneously maximize
the log-likelihood of the model pθ xð Þ and minimize the KL divergence
between the approximation qϕðz∣xÞ and the posterior pθ z∣xð Þ. Re-
writing the ELBO can also capture a more intuitive understanding of
the VAE objective function, where we see terms for the inference
model qϕ z∣xð Þ and the generative model pθ x∣zð Þ.

Lθ,ϕ xð Þ=Eqϕ z∣xð Þ logpθ x∣zð Þ� �� DKL qϕ z∣xð Þ∣∣pθðzÞ
� �

ð6Þ

Herewe see that the objective is tomaximize the log-likelihood of
reconstructing sequences and minimize the KL divergence between
the inference model qϕðz∣xÞ and the prior pθðzÞ. To take gradients of
the ELBO, we used the reparameterization trick40,71. In practice, we
incorporated convex combination linear inverse autoregressive flows
to obtain full rank covariance Gaussian posteriors72.

Models were built using Python 3.6 and PyTorch 1.3.1. Sequences
were input to the model as 15mer vectors, where 45mer ACGT
sequences were converted to 15mers of numbers ranging from 0-31
based on the 32 available building blocks for HFNAP translation.
Sequence vector batches were then fed through an embedding layer
(32,15), resulting in a (batch, 15,15) tensor output that is passed to the
encoder. The encoder consisted of bidirectional stateful LSTMs (2
layers, 200 nodes, tanh activations), which results in a (batch, 400)
intermediate that is passed to a linear layer with tanh activation
resulting in an encoder output (batch, 15). Thismatrix is then passed to
two separate linear layers (batch,15), one for the mean and one for the
log variance. The decoder used fully connected nodes. The sequence
reconstruction network contained two layers (1×480)(32×15) and tanh
activations. The fitness prediction network takes the output (32×15)
matrix from the sequence reconstruction network, and passes it
through a (1×480) layer with sigmoid activation to get the predicted
fitness value. Fitness values are concatenated to the z’s and fed to the
decoder. Reconstruction accuracy was determined by building block
reconstruction accuracy, where the input 15mer was checked against
the output 15mer. DNA reconstruction accuracy was used for qualita-
tive analysis. Reconstruction loss is computed with a cross entropy
loss, and fitness loss is computed by mean squared error. The loss is
regularized using a KL divergence between the latent distribution and
amultivariate Gaussian normal. Themodel was trained on the training
set described previously, comprised of 172,545 selection 2 sequences,
with corresponding fitness values. To select model architecture and
hyperparameters, we empirically performed grid search across a range
of values including the size and number of neural network layers, the
layer architecture, the KL annealing, and the weighting between
sequence reconstruction loss, fitnessMSE, and the KL divergence. The
sequence reconstruction lossweightingwas varied between 1 to 15 and
the fitness MSE weighting was varied between 100 to 200. KL anneal-
ing occurred over 5000 batches using a sigmoid annealing schedule73.
The Adamoptimizerwas usedwith a learning rate of 0.001 and β1 = 0.9
and β2 = 0.9974.

Generating HFNAP sequences with putative binding affinity for
daunomycin
After model parameters were sufficiently trained and reconstruction
loss was minimized, sequences were generated for testing. The top
3072 sequences as determined by fitness, was designated as the
reference set. The reference set was fed into the trained model to
calculate the z distribution to sample from. The corresponding z dis-
tribution was then randomly sampled, and the decoder used to

generate 10,000HFNAP sequences for testing.We varied the fitness in
increments of 0.05 ranging from 0.5 to 0.95. This gave us
1000 sequences at each fitness value: 0.5, 0.55, … 0.95.

Generated sequences selection competition
The 10,000 CVAE-generated HFNAP sequences and top 2000 sequen-
ces by fitness from selection 2 were synthesized (Twist Bioscience).
The templates were amplified using a biotinylated primer, native PAGE
purified on a 10% TBE gel, gel extracted, and DNA column purified. A
mastermix of the building block distribution of the 12,000 sequences
was then made, and used in the HFNAP translation. The translated
sequences were then subjected to the high-stringency selection con-
ditions, with 1min, 10min, and 60min elutions. The 60min elution
samplewas thenDNAcolumnpurified, PCR amplified, andnative PAGE
purified on a 10% TBE gel. The gel extracted material was then DNA
column purified and prepared for HTS as shown previously. The pre-
selection library, a saved sample post translation and before selection,
was prepared similarly. The two samples were subject to HTS on a
NextSeq, and analyzed by AptaSuite64. The resulting data was used to
calculate the enrichments of all of the original 12,000 sequences. The
templates for the top 5 most enriched sequences from the 10,000
generated HFNAPs were then ordered from IDT. The templates were
then used for HFNAP translations to prepare samples for MST
characterization.

Random sequences selection competition
10,000 reference-based random HFNAPs were sampled using the
building block distribution frequency of the reference set. These
HFNAPs were then subjected to the same selection that the 10,000
CVAE-generated HFNAPs underwent.

Full fitness sequences selection competition
A total of 12,000 CVAE-generated HFNAPs were generated using the
following fitness conditions: 0.001, 0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14,0.15,0.16, 0.17, 0.18, 0.19, 0.2, 0.25,
0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95,
and 0.999. 250 sequences for each fitness ≤0.25, and 300 sequences
for each fitness > 0.25. These HFNAPs were then subjected to the same
selection used to process the previous 10,000 CVAE-generated
HFNAPs.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The principal data supporting the findings of this work are available in
the main text or the supplementary materials. High-throughput
sequencing data will be available from the NCBI Sequence Read
Archive under accession code PRJNA854957. Data used for training has
been included in the Supplementary Information. Additional data and
code that support the findings of this study are available from the
authors on request.

Code availability
Additional data and code that support the findings of this study are
available from the authors on request.
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