Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The curious case of dopaminergic prediction errors and learning associative information beyond value

Abstract

Transient changes in the firing of midbrain dopamine neurons have been closely tied to the unidimensional value-based prediction error contained in temporal difference reinforcement learning models. However, whereas an abundance of work has now shown how well dopamine responses conform to the predictions of this hypothesis, far fewer studies have challenged its implicit assumption that dopamine is not involved in learning value-neutral features of reward. Here, we review studies in rats and humans that put this assumption to the test, and which suggest that dopamine transients provide a much richer signal that incorporates information that goes beyond integrated value.

Access to this article via ICE Institution of Civil Engineers is not available.

This is a preview of subscription content, access via your institution

Access options

Access to this article via ICE Institution of Civil Engineers is not available.

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dopamine transients to violations in the prediction of reward features beyond value.
Fig. 2: Dopamine supports learning of reward features beyond value.
Fig. 3: Dopamine transients are sufficient and necessary for latent cue–cue learning.

Similar content being viewed by others

References

  1. Mirenowicz, J. & Schultz, W. Importance of unpredictability for reward responses in primate dopamine neurons. J. Neurophysiol. 72, 1024–1027 (1994).

    CAS  PubMed  Google Scholar 

  2. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    CAS  PubMed  Google Scholar 

  3. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  4. Rescorla, R. A. & Wagner, A. R. in Classical Conditioning II: Current Research and Theory (eds Black, A. H. & Prokesy, W. F.) 64–99 (Appleton-Century-Crofts, 1972).

  5. Sutton, R. S. & Barto, A. G. Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–170 (1981).

    CAS  PubMed  Google Scholar 

  6. Dayan, P. Improving generalization for temporal difference learning: the successor representation. Neural Comput. 5, 613–624 (1993).

    Google Scholar 

  7. Lak, A., Stauffer, W. R. & Schultz, W. Dopamine prediction error responses integrate subjective value from different reward dimensions. Proc. Natl Acad. Sci. USA 111, 2343–2348 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tobler, P. N., Fiorillo, C. D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    CAS  PubMed  Google Scholar 

  9. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    CAS  PubMed  Google Scholar 

  10. Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nat. Neurosci. 10, 1615–1624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schultz, W. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183–195 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. Temporal difference models and reward-related learning in the human brain. Neuron 38, 329–337 (2003).

    PubMed  Google Scholar 

  14. D’Ardenne, K., McClure, S. M., Nystrom, L. E. & Cohen, J. D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 319, 1264–1267 (2008).

    PubMed  Google Scholar 

  15. Rutledge, R. B., Dean, M., Caplin, A. & Glimcher, P. W. Testing the reward prediction error hypothesis with an axiomatic model. J. Neurosci. 30, 13525–13536 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Haber, S. N., Fudge, J. L. & McFarland, N. R. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fallon, J. H. & Moore, R. Y. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J. Comp. Neurol. 180, 545–580, (1978).

    CAS  PubMed  Google Scholar 

  18. Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    PubMed  Google Scholar 

  19. Pessiglione, M., Seymour, B., Flandin, G., Dolan, R. J. & Frith, C. D. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442, 1042–1045 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Knutson, B. et al. Amphetamine modulates human incentive processing. Neuron 43, 261–269 (2004).

    CAS  PubMed  Google Scholar 

  21. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate for prediction and reward. Science 275, 1593–1599 (1997).

    CAS  PubMed  Google Scholar 

  22. Glimcher, P. W. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc. Natl Acad. Sci. USA 108, 15647–15654 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kakade, S. & Dayan, P. Dopamine: generalization and bonuses. Neural Netw. 15, 549–559 (2002).

    PubMed  Google Scholar 

  24. Starkweather, C. K. & Uchida, N. Dopamine signals as temporal difference errors: recent advances. Curr. Opin. Neurobiol. 67, 95–105 (2021).

    CAS  PubMed  Google Scholar 

  25. Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Jeong, H. et al. Mesolimbic dopamine release conveys causal associations. Science 378, eabq6740 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Coddington, L. T., Lindo, S. E. & Dudman, J. T. Mesolimbic dopamine adapts the rate of learning from action. Nature 614, 294–302 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kutlu, M. G. et al. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr. Biol. 31, 4748–4761.e8 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B. & Daw, N. D. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat. Neurosci. 27, 1574–1586 (2024).

    CAS  PubMed  Google Scholar 

  30. Takahashi, Y. K. et al. Dopamine neurons respond to errors in the prediction of sensory features of expected rewards. Neuron 95, 1395–1405.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Howard, J. D. & Kahnt, T. Identity prediction errors in the human midbrain update reward-identity expectations in the orbitofrontal cortex. Nat. Commun. 9, 1611 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Boorman, E. D., Rajendran, V. G., O’Reilly, J. X. & Behrens, T. E. Two anatomically and computationally distinct learning signals predict changes to stimulus-outcome associations in hippocampus. Neuron 89, 1343–1354 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Suarez, J. A., Howard, J. D., Schoenbaum, G. & Kahnt, T. Sensory prediction errors in the human midbrain signal identity violations independent of perceptual distance. eLife 8, e43962 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Witkowski, P. P., Park, S. A. & Boorman, E. D. Neural mechanisms of credit assignment for inferred relationships in a structured world. Neuron 110, 2680–2690.e9 (2022).

    CAS  PubMed  Google Scholar 

  35. Liu, Q. et al. Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks. Nat. Commun. 15, 1704 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Millidge, B., Song, Y., Lak, A., Walton, M. E. & Bogacz, R. Reward bases: a simple mechanism for adaptive acquisition of multiple reward types. PLoS Comput. Biol. 20, e1012580 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Papageorgiou, G. K., Baudonnat, M., Cucca, F. & Walton, M. E. Mesolimbic dopamine encodes prediction errors in a state-dependent manner. Cell Rep. 15, 221–228 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ogasawara, T. et al. A primate temporal cortex — zona incerta pathway for novelty seeking. Nat. Neurosci. 25, 50–60 (2022).

    CAS  PubMed  Google Scholar 

  40. Akam, T. & Walton, M. E. What is dopamine doing in model-based reinforcement learning? Curr. Opin. Behav. Sci. 38, 74–82 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    CAS  PubMed  Google Scholar 

  43. Pearce et al. in Quantitative Analyses of Behavior Vol. 3 (eds Commons, M. L., Herrnstein, R. J. & Wagner, A. R.) 241–255 (Ballinger, 1982).

  44. Stalnaker, T. A. et al. Dopamine neuron ensembles signal the content of sensory prediction errors. eLife 8, e49315 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. Howard, J. D., Edmonds, D., Schoenbaum, G. & Kahnt, T. Distributed midbrain responses signal the content of positive identity prediction errors. Curr. Biol. 34, 241–4240.e4 (2024).

    Google Scholar 

  46. Garr, E. et al. Mesostriatal dopamine is sensitive to specific cue-reward contingencies. Sci. Adv. https://doi.org/10.1126/sciadv.adn4203 (2023).

  47. Steinberg, E. E. et al. A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16, 966–973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kamin, L. J. "Attention-like" processes in classical conditioning. In Miami Symposium on the Prediction of Behavior, 1967: Aversive Stimulation (ed. Jones, M. R.) 9–31 (Univ. of Miami Press, 1968).

  49. Keiflin, R., Pribut, H. J., Shah, N. B. & Janak, P. H. Ventral tegmental dopamine neurons participate in reward identity predictions. Curr. Biol. 29, 93–103.e3 (2019).

    CAS  PubMed  Google Scholar 

  50. Holland, P. C. & Rescorla, R. A. The effects of two ways of devaluing the unconditioned stimulus after first and second-order appetitive conditioning. J. Exp. Psychol. Anim. Behav. Process. 1, 355–363 (1975).

    Google Scholar 

  51. Howard, J. D., Gottfried, J. A., Tobler, P. N. & Kahnt, T. Identity-specific coding of future rewards in the human orbitofrontal cortex. Proc. Natl Acad. Sci. USA 112, 5195–5200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stalnaker, T. A. et al. Orbitofrontal neurons infer the value and identity of predicted outcomes. Nat. Commun. 5, 3926 (2014).

    CAS  PubMed  Google Scholar 

  53. Stoll, F. M. & Rudebeck, P. H. Preferences reveal dissociable encoding across prefrontal-limbic circuits. Neuron 112, 2241–2256.e8 (2024).

    CAS  PubMed  Google Scholar 

  54. Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Howard, J. D. et al. Targeted stimulation of human orbitofrontal networks disrupts outcome-guided behavior. Curr. Biol. 30, 490–498.e4 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S. & Murray, E. A. Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat. Neurosci. 16, 1140–1145 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sias, A. C. et al. A bidirectional corticoamygdala circuit for the encoding and retrieval of detailed reward memories. eLife 10, e68617 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ostlund, S. B. & Balleine, B. W. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental learning. J. Neurosci. 27, 4819–4825 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of orbitofrontal cortex impair rats’ differential outcome expectancy learning but not conditioned stimulus-potentiated feeding. J. Neurosci. 25, 4626–4632 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sias, A. C. et al. Dopamine projections to the basolateral amygdala drive the encoding of identity-specific reward memories. Nat. Neurosci. 27, 728–736 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brogden, W. J. Sensory pre-conditioning. J. Exp. Psychol. 25, 323–332 (1939).

    Google Scholar 

  62. Jones, J. L. et al. Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338, 953–956 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, F., Schoenbaum, G. & Kahnt, T. Interactions between human orbitofrontal cortex and hippocampus support model-based inference. PLoS Biol. 18, e3000578 (2020).

    PubMed  PubMed Central  Google Scholar 

  64. Sharpe, M. J. et al. Dopamine transients are sufficient and necessary for acquisition of model-based associations. Nat. Neurosci. 20, 735–742 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Esmoris-Arranz, F. J., Miller, R. R. & Matute, H. Blocking of subsequent and antecedent events. J. Exp. Psychol. Anim. Behav. Process. 23, 145–156 (1997).

    CAS  PubMed  Google Scholar 

  66. Kamin, L. J. in Punishment and Aversive Behavior (eds Campbell, B. A. & Church, R. M.) 242–259 (Appleton-Century-Crofts, 1969).

  67. Mackintosh, N. J. A theory of attention: variations in the associability of stimuli with reinforcement. Psychol. Rev. 82, 276–298 (1975).

    Google Scholar 

  68. Hart, E. E., Sharpe, M. J., Gardner, M. P. & Schoenbaum, G. Responding to preconditioned cues is devaluation sensitive and requires orbitofrontal cortex during cue-cue learning. eLife 9, e59998 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sharpe, M. J., Batchelor, H. M. & Schoenbaum, G. Preconditioned cues have no value. eLife 6, e28362 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Wong, F. S., Westbrook, R. F. & Holmes, N. M. ‘Online’ integration of sensory and fear memories in the rat medial temporal lobe. eLife 8, e47085 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Costa, K. M., Raheja, N., Mirani, J., Sercander, C. & Schoenbaum, G. Striatal dopamine release reflects a domain-general prediction error. Preprint at bioRxiv https://doi.org/10.1101/2023.08.19.553959 (2023).

  72. Moser, E. I., Kropff, E. & Moser, M. B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    CAS  PubMed  Google Scholar 

  73. Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ilango, S. et al. Similar roles of substantia nigra and ventral tegmental dopamine neurons in reward and aversion. J. Neurosci. 34, 817–822 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Covey, D. P. & Cheer, J. F. Accumbal dopamine release tracks the expectation of dopamine neuron-mediated reinforcement. Cell Rep. 27, 481–490 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wolff, A. R. & Saunders, B. T. Sensory cues potentiate VTA dopamine mediated reinforcement. eNeuro 11, ENEURO.0421-0423.2024 (2024).

  77. Chang, C. Y. et al. Brief optogenetic inhibition of VTA dopamine neurons mimics the effects of endogenous negative prediction errors during Pavlovian over-expectation. Nat. Neurosci. 19, 111–116 (2016).

    CAS  PubMed  Google Scholar 

  78. Chang, C. Y., Gardner, M., Di Tillio, M. G. & Schoenbaum, G. Optogenetic blockade of dopamine transients prevents learning induced by changes in reward features. Curr. Biol. 27, 3480–3486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Chang, C. Y., Gardner, M. P. H., Conroy, J. S., Whitaker, L. R. & Schoenbaum, G. Brief, but not prolonged, pauses in the firing of midbrain dopamine neurons are sufficient to produce a conditioned inhibitor. J. Neurosci. 38, 8822–8830 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Millard, S. J. et al. Cognitive representations of intracranial self-stimulation of midbrain dopamine neurons depend on stimulation frequency. Nat. Neurosci. 27, 1253–1259 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Takahashi, Y. K. et al. Dopaminergic prediction errors in the ventral tegmental area reflect a multithreaded predictive model. Nat. Neurosci. 26, 830–839 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gardner, M. P. H., Schoenbaum, G. & Gershman, S. J. Rethinking dopamine as generalized prediction error. Proc. Biol. Sci. 285, 20181645 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Gershman, S. J. The successor representation: its computational logic and neural substrates. J. Neurosci. 38, 7193–7200 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Langdon, A. J., Sharpe, M. J., Schoenbaum, G. & Niv, Y. Model-based predictions for dopamine. Curr. Opin. Neurobiol. 49, 1–7 (2018).

    CAS  PubMed  Google Scholar 

  85. German, D. C., Schlusselberg, D. S. & Woodward, D. J. Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: from mouse to man. J. Neural Transm. 57, 243–254 (1983).

    CAS  PubMed  Google Scholar 

  86. Kahnt, T. in Encyclopedia of the Human Brain 2nd edn (ed. Grafman, J. H.) 387–400 (Elsevier, 2025).

  87. Tegelbeckers, J., Porter, D. B., Voss, J. L., Schoenbaum, G. & Kahnt, T. Lateral orbitofrontal cortex integrates predictive information across multiple cues to guide behavior. Curr. Biol. 33, 4496–4504.e5 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program at the National Institute on Drug Abuse. The opinions expressed in this article are the authors’ own and do not reflect the view of the National Institutes of Health, Department of Health and Human Services. The authors have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Thorsten Kahnt or Geoffrey Schoenbaum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks Naoshige Uchida, who co-reviewed with Malcolm Campbell, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahnt, T., Schoenbaum, G. The curious case of dopaminergic prediction errors and learning associative information beyond value. Nat. Rev. Neurosci. 26, 169–178 (2025). https://doi.org/10.1038/s41583-024-00898-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-024-00898-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing