Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Maximum sum bitonic subarray in C++
In this problem, we are given an array arr[]. Our task is to create a program to find the maximum sum bitonic subarray in C++.
Bitonic Subarray is a special subarray in which the element strictly increase first and then strictly decreases after reaching a certain point.
Let’s take an example to understand the problem,
Input
arr[] = {4, 2, 3, 7 ,9, 6, 3, 5, 1}
Output
30
Explanation
The bitonic subarray is [2, 3, 7, 9, 6, 3]. Sum = 2 + 3 + 7 + 9 + 6 + 3 = 30
Solution Approach
The solution is similar to that in the bitonic subsequence problem. We will create two arrays incSubArr[] and decSubArr[]. That will create store increasing and decreasing subarrays. At index i, incSubArr[i] will find increasing subarray from 0 to i. And decSubArr[i] will find increasing subarray from i to N.
The maxSum is the maximum value calculated as (incSubArr[i] + decSubArr[i] - arr[i]).
Example
Program to illustrate the working of our solution,
#include <iostream>
using namespace std;
int findMaxSumBiTonicSubArr(int arr[], int N){
int incSubArr[N], decSubArr[N];
int max_sum = -1;
incSubArr[0] = arr[0];
for (int i=1; i<N; i++)
if (arr[i] > arr[i-1])
incSubArr[i] = incSubArr[i-1] + arr[i];
else
incSubArr[i] = arr[i];
decSubArr[N-1] = arr[N-1];
for (int i= (N-2); i>=0; i--)
if (arr[i] > arr[i+1])
decSubArr[i] = decSubArr[i+1] + arr[i];
else
decSubArr[i] = arr[i];
for (int i=0; i<N; i++)
if(max_sum < (incSubArr[i] + decSubArr[i] - arr[i]))
max_sum = incSubArr[i] + decSubArr[i] - arr[i];
return max_sum;
}
int main(){
int arr[] = {4, 2, 3, 7 ,9, 6, 3, 5, 1};
int N = sizeof(arr) / sizeof(arr[0]);
cout<<"The Maximum Sum of Bitonic Subarray is "<<findMaxSumBiTonicSubArr(arr, N);
return 0;
}
Output
The Maximum Sum of Bitonic Subarray is 30