XVIPP

XEP-0031: A Framework For Securing Jabber Conversations

Paul Lloyd
mailto:paul_lloyd@hp.com
xmpp: paul_lloyd@jabber.hp.com(private)

2002-07-09
Version 0.2
Status Type Short Name
Deferred Standards Track N/A

Although the value and utility of contemporary instant messaging systems, like Jabber, are now in-
disputable, current security features to protect message data are generally inadequate for many deploy-
ments; this is particularly true in security conscious environments like large, commercial enterprises and
government agencies. These current features suffer from issues of scalability, usability, and supported
features. Furthermore, there is a lack of standardization. We present a protocol to allow communities of
Jabber users to apply cryptographic protection to selected conversation data.

mailto:paul_lloyd@hp.com
xmpp:paul_lloyd@jabber.hp.com (private)

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2024 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1 Introduction 1
2 Requirements And Considerations 2
2.1 SecurityRequirements e 2
2.1.1 DataProtection Requirements 2

2.1.2 Data Classification Requirements 3

2.1.3 TheEnd ToEnd Requirement 3

214 Trustlssues e 4

2.1.5 Cryptosystem Design Considerations 4

2.2 Environmental Considerations 4
2.3 UsabilityRequirements 4
2.4 Development And Deployment Requirements 5
3 Protocol Specification 6
3.1 Protocol OVerview it 6
3.2 Definitions And Notation 6
33 XMLProcessing i 7
3.3.1 Transporting BinaryContent 7

3.3.2 Transporting EncryptedContent 7

333 HMACComputation v i i 8

3.3.4 Performing Cryptographic Operations 8

3.4 XMLNamMeSPaces v v v v v vt i i it e e e e e e e e 8
3.5 Security SesSions e e e 9
351 OVEIVIEW . . . o v oo e 9

3.5.2 Security Session Negotiation 10

353 DIDS . . o o e e e e e 10

3.5.4 Generating And Sending the sessionlPDU 12

3.5.5 Receiving And Processing the sessionl1PDU 13

3.5.6 Generating And Sending the session2PDU 14

3.5.7 Receiving And Processing the session2PDU 15

3.5.8 Generating And Sending the session3PDU 16

3.5.9 Receiving And Processing the session3PDU 17
3.5.10 Session Key Material Derivation 18

3.6 KeyTransport e 18
3.6 OVEIVIEW v oo e 18

3.6.2 TheKey Transport Mechanism 18

3.63 DTIDs o e e e e e e e 18

3.6.4 Generating And Sending the keyTransportPDU 19

3.6.5 Receiving and Processing the keyTransportPDU 20

3.7 MessageProtection e 21
3701 OVEIVIEW . . v v v o e 21

3.7.2 The Message Protection Mechanism 21

373 DID. . oo e e e e e

3.7.4 Generating And Sending the protectedMessagePDU
3.7.5 Receiving and Processing the protectedMessage PDU
3.8 RequestingKeys e
3.9 ConformanceProfile

Diffie-Hellman Groups

4.1 1024 bit Group, modpl024t e
4.2 2048 bit Group, modp2048 e e
4.3 4096 bit Group, modp4096 e
4.4 8192bit Group, modp8192 e e

Security Considerations

Examples

6.1 Security Session e
6.2 KeyTransport 0 i i i i e e e e
6.3 MessageProtection

References

24
24
25
25
26

27

28
28
30
30

31

/1 INTRODUCTION

1 Introduction

Instant messaging has clearly crossed the chasm from experimental to mainstream in a short
amount of time. It is particularly interesting to note the extent to which the employees
and affiliates of large enterprises have adopted instant messaging as part of their daily
professional lives. IM is no longer simply used on Friday evening to select which movie to
watch; it’s now used on Monday morning to select which company to acquire.

While the benefits of IM are clear and compelling, the risks associated with sharing sensitive
information in an IM environment are often overlooked. We need a mechanism that permits
communities of users to protect their IM conversations. This document presents an exten-
sion protocol that can be incorporated into the existing Jabber protocol to provide such a
mechanism. We hope that this protocol spurs both interest and further investigation into
mechanisms to protect Jabber conversations. We also hope that the Jabber community can
accelerate the adoption of standardized security mechanisms.

In addition to its ability to protect traditional messaging data, the proposed protocol may also
serve as a foundation for securing other data transported via other Jabber extensions.

We use the following terms throughout this document to describe the most relevant aspects
of the IM environment that we wish to address:

« user. A user is simply any Jabber user. Users are uniquely identified by a JID; they
connect to Jabber hosts using a Jabber node.
Users produce and consume information, and we wish to provide them with mecha-
nisms that can be used to protect this information.

¢ community. A community is a collection of users who wish to communicate via
Jabber. No restrictions or assumptions are made about the size of communities or the
geographical, organizational, or national attributes of the members. Communities are
assumed to be dynamic and ad-hoc. Users typically join communities by the simple act
of invitation. All members of a community are assumed to be peers.
The members of communities share information among themselves, and we wish to
provide them with mechanisms that can permit information to only be shared by
community members.

conversation. A conversation is the set of messages that flows among the members of
a community via some network. Conversations consist of both the actual conversation
data produced and consumed by the various users as well as the Jabber protocol
elements that transport it. Members participate in a conversation when they are the
source or destination of this traffic.

In hostile network environments, like the Internet, conversation data is vulnerable to a
variety of well-known attacks.

\/ 2 REQUIREMENTS AND CONSIDERATIONS

Other Jabber and IM terms are used in a traditional, intuitive fashion.

2 Requirements And Considerations

The proposed protocol is designed to address the specific requirements and considerations
presented in this section.

2.1 Security Requirements
2.1.1 Data Protection Requirements

A secure IM system must permit conversation participants to preserve the following proper-
ties of their conversation data:

« confidentiality. Conversation data must only be disclosed to authorized recipients
« integrity. Conversation data must not be altered

« data origin authentication. Recipients must be able to determine the identity of the
sender and trust that the message did, in fact, come from the sender. It is important
to note that this requirement does not include the requirement of a durable digital
signature on conversation data.

« replay protection. Recipients must be able to detect and ignore duplicate conversation
data.

These are established, traditional goals of information security applied to the conversation
data. In the IM environment, these goals protect against these attacks:

« eavesdropping, snooping, etc.
« masquerading as a conversation participant

« forging messages

\/ 2 REQUIREMENTS AND CONSIDERATIONS

Preserving the availability of conversation data is not addressed by this protocol.

Preserving the anonymity of conversation participants is an interesting topic which we defer
for future exploration.

Finally, note that this protocol does not concern any authentication between a Jabber node
and a Jabber host.

2.1.2 Data Classification Requirements

A secure IM system must support a data classification feature through the use of security
labeling. Conversation participants must be able to associate a security label with each piece
of conversation data. This label may be used to specify a data classification level for the
conversation data.

2.1.3 The End To End Requirement
It is easy to imagine Jabber systems in which the servers play active, fundamental roles in the
protection of conversation data. Such systems could offer many advantages, like:

« allowing the servers to function as credential issuing authorities,

« allowing the servers to function as policy enforcement points.

Unfortunately, such systems have significant disadvantages when one considers the nature
of instant messaging:

« Many servers may be untrusted, public servers.

« In many conversation communities, decisions of trust and membership can only be
adequately defined by the members themselves.

« In many conversation communities, membership in the community changes in real
time based upon the dynamics of the conversation.

+ In many conversation communities, the data classifaction of the conversation changes
in real time based upon the dynamics of the conversation.

\/ 2 REQUIREMENTS AND CONSIDERATIONS

Furthermore, the widespread use of gateways to external IM systems is a further complication.
Based on this analysis, we propose that security be entirely controlled in an end to end fashion
by the conversation participants themselves via their user agent software.

2.1.4 Trust Issues

We believe that, ultimately, trust decisions are in the hands of the conversation participants.
A security protocol and appropriate conforming user agents must provide a mechanism for
them to make informed decisions.

2.1.5 Cryptosystem Design Considerations

One of the accepted axioms of security is that people must avoid the temptation to start from
scratch and produce new, untested algorithms and protocols. History has demonstrated that
such approaches are likely to contain flaws and that considerable time and effort are required
to identify and address all of these flaws. Any new security protocol should be based on
existing, established algorithms and protocols.

2.2 Environmental Considerations

Any new IM security protocol must integrate smoothly into the existing IM environment, and
it must also recognize the nature of the transactions performed by conversation participants.
These considerations are especially important:

« dynamic communities. The members of a community are defined in near real time by
the existing members.

« dynamic conversations. Conversations may involve any possible subset of the entire
set of community members.

Addressing these considerations becomes especially crucial when selecting a conference
keying mechanism.

2.3 Usability Requirements

Given the requirement to place the responsibility for the protection of conversation data in
the hands of the participants, it is imperative to address some fundamental usability issues:

\V.)

REQUIREMENTS AND CONSIDERATIONS

First, overall ease of use is a requirement. For protocol purposes, one implication is that
some form of authentication via passphrases is necessary. While we recognize that this
can have appalling consequences, especially when we realize that a passphrase may be
shared by all of the community members, we also recognize the utility.

PKIs are well established in many large organizations, and some communities will
prefer to rely on credentials issued from these authorities. To ensure ease of use, we
must strive to allow the use of existing PKI credentials and trust models rather than
impose closed, Jabber-specific credentials.

Finally, performance must not be negatively impacted,; this is particularly true if we ac-
cept that most communities are composed of human users conversing in real time. For
protocol purposes, one obvious implication is the desire to minimize computationally
expensive public key operations.

We note that, in practice, the design and construction of user agents will also have a major
impact on ease of use.

2.4 Development And Deployment Requirements

To successfully integrate into the existing Jabber environment, an extension protocol for
security must satisfy the following:

It must be an optional extension of the existing Jabber protocol.

It must be transparent to existing Jabber servers.

It must function gracefully in cases where some community members are not running
a user agent that supports the protocol.

It must make good use of XML.

It must avoid encumbered algorithms.

It must be straightforward to implement using widely available cryptographic toolkits.

/'3 PROTOCOL SPECIFICATION

* It must not require a PKI.

Failure to accommodate these will impede or prohibit adoption of any security protocol.

3 Protocol Specification

3.1 Protocol Overview

Ultimately, conversation data is protected by the application of keyed cryptographic oper-
ations. One operation is used to provide confidentiality, and a separate operation is used
to provide integrity and data origin authentication. The keys used to parameterize these
operations are called conversation keys. Each conversation should have its own unique set of
conversation keys shared among the conversation participants.

Conversation keys are transported among the conversation participants within a negotiated
security session. A security session allows pairs of conversation participants to securely share
conversation keys throught all participants in the conversation as required.

3.2 Definitions And Notation

The following terms are used throughout this specification:

« initiator. The initiator is the user who requested a security session negotiation. Initia-
tor’s are identified by their JID.

« responder. The responder is the user who responded to a security session negotiation
request. Responder’s are identified by their JID.

¢ hmac. This indicates the HMAC algorithm. The notation hmac (key, value) indicates the
HMAC computation of value using key.

» concatentation operator. The ’|’ character is used in character or octet string expres-
sions to indicate concatenation.

« security session ID. A character string that uniquely identifies a security session be-
tween two users. Security session IDs MUST only consist of Letters, Digits, and these

L2EJEE 20 T It T B I

characters: ", ’+,’-",”_",’@’. Security session IDs are case sensitive.

/'3 PROTOCOL SPECIFICATION

« SS. This term indicates the security session secret that is agreed to during a security
session negotiation.

« SKc. This term indicates the keying material used within a security session to protect
confidentiality. The SKc is derived from the security session secret, SS.

« SKi. This term indicates the keying material used within a security session to protect
integrity and to provide authnetication. The SKi is derived from the security session
secret, SS.

« conversation key ID. A character string that uniquely identifies a conversation key
shared by a community of users. Conversation key IDs MUST only consist of Letters,

Digits, and these characters: ., +,’-", ", ’@’. Conversation key IDs are case sensitive.
Conversation key IDs SHOULD be generated from at least 128 random bits.

« passphrase ID. A character string that uniquely identifies a passphrase shared by a
community of users. Passphrase IDs MUST only consist of Letters, Digits, and these

77 0.9 19 2 9

characters: ’.’,’+,’-",”_,’@’. Passphrase IDs are case sensitive.

3.3 XML Processing

Since cryptographic operations are applied to data that is transported within an XML stream,
the protocol defines a set of rules to ensure a consistent interpretation by all conversation
participants.

3.3.1 Transporting Binary Content

Binary data, such as the result of an HMAG, is always transported in an encoded form; the two
supported encoding schemes are base64 and hex.

Senders MAY include arbitrary white space within the character stream. Senders SHOULD
NOT include any other characters outside of the encoding set.

Receivers MUST ignore all characters not in the encoding set.

3.3.2 Transporting Encrypted Content

Encrypted data, including wrapped cryptographic keys, are always wrapped per XML Encryp-
tion.

/'3 PROTOCOL SPECIFICATION

3.3.3 HMAC Computation

HMACs are computed over a specific collection of attribute values and character data; when
computing an HMAC the following rules apply:

All characters MUST be encoded in UTF-8.

« The octets in each character MUST be processed in network byte order.

« For a given element, the attribute values that are HMACed MUST be processed in the
specified order regardless of the order in which they appear in the element tag.

« For each attribute value, the computation MUST only include characters from the
anticipated set defined in this specification; in particular, white space MUST always be
ignored.

« For character data that is represented in an encoded form, such as base64 or hex, the
computation MUST only include valid characters from the encoding set.

3.3.4 Performing Cryptographic Operations

The following algorithm is used to encrypt a character string, such as an XML element:

¢ The character string MUST be encoded in UTF-8.

« The octets in each character MUST be processed in network byte order.

« Appropriate cryptographic algorithm parameters, such as an IV for a block cipher, are
generated.

3.4 XML Namespaces

In order to integrate smoothly with the existing Jabber protocol, this protocol utilizes a new
XML namespace, jabber:security.

/'3 PROTOCOL SPECIFICATION

3.5 Security Sessions
3.5.1 Overview

A security session is a pair-wise relationship between two users in which the users have
achieved the following:

« They have mutually authenticated each other using credentials acceptable to both.

« They have agreed on a set of key material known only to both.
Security sessions are identified by a 3-tuple consisting of the following items:

« initiator. This is the JID of the user who initiated the session.

« responder. This is the JID of the user who responded to the initiator’s request.

« sessionld. A label generated by the initiator.

Security sessions are used to transport conversation keys between the conversation partici-
pants.

Scalabilty is an immediate, obvious concern with such an approach. We expect this approach
to be viable in practice because:

« The number of participants in typical, interactive conversations is generally on the
order of 10"1.

« New participants are usually invited to dynamically join a conversation by being
invited by an existing participant; this existing participant is the only one who needs
to establish a security session with the new participant, because this single security
session can be used to transport all of the required conversation keys.

« User agents can permit the lifetime of security sessions to last long enough to allow
transport of conversation keys for a variety of converstions.

« Conversation keys can be established with a suitable lifetime.

Other approaches, including the incorporation of more sophisticated conference keying
algorithms, are a topic for future exploration.

/'3 PROTOCOL SPECIFICATION

3.5.2 Security Session Negotiation

Security sessions are negotiated using an authenticated Diffie-Hellman key agreement ex-
change. The two goals of the exchange are to perform the mutual authentication and to agree
to a secret that is know only to each.

The exchange also allows the parties to negotiate the various algorithms and authentication
mechanisms that will be used.

Once the pair agree on a shared secret, they each derive key material from the secret; this
key material is used to securely transport the conversation keys, which are used to actually
protect conversation data.

The protocol data units (PDUs) that comprise the exchange are transported within existing
Jabber protocol elements.

3.5.3 DTDs

<!IELEMENT

<IATTLIST

<IELEMENT

<IATTLIST

<!IELEMENT

<! ELEMENT

<VATTLIST

<! ELEMENT

<VATTLIST

<! ELEMENT

<!IELEMENT

sessionl
(nonce,
sessionl
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-shal) #REQUIRED >

keyAgreement, algorithms,

nonce
(#PCDATA)* >

nonce

encoding (base64 | hex) #REQUIRED >
keyAgreement

(dh) >

dh

(publicKey) >

dh

group (modpl1024 |
>

modp2048 | modp4096

publicKey
(#PCDATA) * >
publicKey

encoding (base64 | hex) #REQUIRED >

algorithms
(algorithm)+ >

algorithm

10

authnMethods) >

modp8192) #REQUIRED

/'3 PROTOCOL SPECIFICATION

<!IELEMENT
<IATTLIST

<! ELEMENT
<VATTLIST

<IELEMENT

<IELEMENT

<! ELEMENT

<IATTLIST

<!IELEMENT

<VATTLIST

<! ELEMENT

<IATTLIST

<! ELEMENT
<IATTLIST

<! ELEMENT

<IATTLIST

<! ELEMENT

(confAlg, hmacAlg) >
confAlg EMPTY >
confAlg

cipher (3des-cbc | aes-128-chc |
hmacAlg EMPTY >
hmacAlg

alg (hmac-shal | hmac-md5) #REQUIRED>
authnMethods

(authnMethod)+ >

authnMethod
(digSig | passphrase) >

digSig
(certificate+,
digSig
alg (rsa) #REQUIRED>

caCertificatex) >

certificate
(#PCDATA)* >
certificate
type (x509 |
encoding (base64 |

pkcs7) #REQUIRED
hex) #REQUIRED >

caCertificate
(#PCDATA)* >
caCertificate
type (x509 |
encoding (base64 |

pkcs7) #REQUIRED
hex) #REQUIRED >

passphrase EMPTY >
passphrase
passphraseld CDATA #REQUIRED >

session2
(nonce,
>
session?2
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-shal) #REQUIRED >

keyAgreement, algorithm, authnMethod,

authenticator

11

aes-256-cbc) #REQUIRED >

authenticator)

/'3 PROTOCOL SPECIFICATION

(#PCDATA) * >
<I'ATTLIST authenticator
encoding (base64 | hex) #REQUIRED>

<!ELEMENT session3
(authenticator, keyTransportx) >
<I'ATTLIST session3

version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac-shal) #REQUIRED >

3.5.4 Generating And Sending the session1 PDU

The initiator’s user agent employs the following algorithm to generate the session1 PDU:

Appropriate values for the version, initiator, responder, sessionld, and hmac attributes
are assembled. The version of this specification is '1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively.

The nonce is prepared by first generating a string of 20 random octets (160 random
bits). The octets are then encoded into a string of 40 hex characters representing the
random string.

A Diffie-Hellman group is selected. The appropriate values for g and p will be used to
generate the initiator’s public key.

An ephemeral private key, x, is generated using g and p for the selected group. This key
MUST be generated using an appropriate random number source. The corresponding
public key, g7, is generated and encoded.

The desired set of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which these algorithms are selected and all related policy issues are outside
the scope of this specification.

The desired set of authentication algorithms is selected. The manner in which these
algorithms are selected and all related policy issues are outside the scope of this spec-
ification. When the digital signature form of authentication is selected, the relevant

12

/'3 PROTOCOL SPECIFICATION

end-entity certificate and, optionally, a chain of CA certificates representing a valida-
tion path, is assembled and encoded. A set of trusted CA certificates MAY optionally
be included via caCertificate elements; if so, the set MUST include the issuer of the
initiator’s end-entity certificate.

These values are then used to prepare the XML session1 element; this element is transmitted
via the existing Jabber iq mechanism:

<iq from="initiator’s_JID” to="responder’s_JID” type="get” id="
whatever?”>
<query xmlns="”jabber:security:session”>
<sessionl1>...</sessionl>
</query>
</iqg>

3.5.5 Receiving And Processing the sessionl PDU

The responder’s user agent employs the following algorithm to process each session1 PDU:

« The version and hmac attributes are checked against the values supported by the user
agent. An unsupported version results in an error code of 10000, and an unsupported
hmac results in an error code of 10001. The responder attribute MUST match the JID of
the receiver; a mismatch results in an error code of 10009

« The nonce is decoded, and its length is checked. The nonce may also be checked to
detect replays. An invalid nonce results in an error code of 10002.

« The Diffie-Hellman group is checked against the values supported by the user agent. An
unsupported group results in an error code of 10003

« The desired confidentiality and HMAC cryptographic algorithms are selected from the
proposed set. The manner in which these algorithms are selected and all related policy
issues are outside the scope of this specification. If none of the proposed algorithms are
supported, an error code of 10004 occurs.

« The desired authentication algorithm is selected from the proposed set. The manner in
which this algorithm is selected and all related policy issues are outside the scope of this
specification. In the digital signature case, the responder’s end-entity certificate MUST
be issued by one of the trusted CAs listed in the session1 PDU or by the same issuer as
the initiator’s end-entity certificate. If none of the proposed algorithms are supported,

13

/'3 PROTOCOL SPECIFICATION

an error code of 10005 results. If the responder does not have acceptable credentials,
an error code of 10006 occurs.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

<iq from="responder’s_JID” to="initiator’s_JID” type="error” id=”"
whatever”>
<error code="7???">...</error>

</ig>

If no errors occur, then the responder’s user agent proceeds with the session2 PDU.

3.5.6 Generating And Sending the session2 PDU

The responder’s user agent employs the following algorithm to generate the session2 PDU:

« Appropriate values for the version, initiator, responder, sessionld, and hmac attributes
are assembled. The version of this specification is '1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively. The sessionld and
hmac values MUST match the sessionld and hmac values contained in the session1 PDU.

+ The nonce is prepared by first generating a string of 20 random octets (160 random
bits). The octets are then encoded into a string of 40 hex characters representing the
random string.

« An ephemeral private key, y, is generated using g and p for the group indicated by
the session1 PDU. This key MUST be generated using an appropriate random number
source. The corresponding public key, g"y, is generated and encoded.

* The desired pair of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which this pair is selected and all related policy issues are outside the scope
of this specification.

« The desired authentication algorithm is selected. The manner in which this algorithm
is selected and all related policy issues are outside the scope of this specification.
When the digital signature form of authentication is selected, the relevant end-entity
certificate and, optionally, a chain of CA certificates representing a validation path, is
assembled and encoded.

14

/'3 PROTOCOL SPECIFICATION

« Based on the selected authentication algorithm, the responder’s authenticator is
constructed. A digital signature algorithm requires calculating:

- HK = hmac (initiator’s nonce | responder’s nonce, g"xy)
- HASH_R = hmac (HK, version | sessionld | g"y | g"x | responder’s JID)

HASH_R is signed using the responder’s private key and encoded in PKCS#1 format. The
PKCS#1 octets are then further encoded in base64 or hex.
The passphrase algorithm requires calculating:

- HK = hmac (hash (passphrase), initiator’s nonce | responder’s nonce)
- HASH_R = hmac (HK, version | sessionld | g"y | g"x | responder’s JID)

The octets of HASH_R are simply encoded in base64 or hex.
The manner in which the responder’s user agent gains access to the responder’s
credentials is outside the scope of this specification.

These values are then used to prepare the XML session2 element; this element is transmitted
via the existing Jabber iq mechanism:

<igq from="responder’s_JID” to="initiator’s_JID” type="result” id=”"
whatever”>
<query xmlns="”jabber:security:session”>
<session2>...</session2>
</query>
</iqg>

3.5.7 Receiving And Processing the session2 PDU

The initiator’s user agent employs the following algorithm to process each session2 PDU:

« The attribute values are checked against the values sent in the sessionl PDU. A mis-
match results in an error code of 10008.

+ The nonce is decoded, and its length is checked. The nonce may also be checked to
detect replays. An invalid nonce results in an error code of 10002.

15

/'3 PROTOCOL SPECIFICATION

The Diffie-Hellman group is checked against the value sent in the sessionl PDU. A
mismatch results in an error code of 10003

« The confidentiality and HMAC cryptographic algorithms are validated against the set
proposed in the session1 PDU. A mismatch results in an error code of 10004.

« The authentication algorithm is validated against the set proposed in the session1 PDU.
A mismatch results in an error code of 10005.

The authenticator is verified. A failure results in an error code of 10007.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

<ig from="initiator’s_JID” to="responder’s_JID” type="error” id="
whatever”>
<error code=7"???">...</error>

</iqg>

If no errors occur, then the initiator’s user agent proceeds with the session3 PDU.

3.5.8 Generating And Sending the session3 PDU

The initiator’s user agent employs the following algorithm to generate the session3 PDU:

« Appropriate values for the version, initiator, responder, sessionld, and hmac attributes
are assembled. The version of this specification is '1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively. The sessionld and
hmac values MUST match the sessionld and hmac values contained in both the session1
and session2 PDUs,

« Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature algorithm requires calculating:

- HK = hmac (initiator’s nonce | responder’s nonce, g"xy)

- HASH_I = hmac (HK, version | sessionld | g"x | g"y | initiator’s JID)

16

/'3 PROTOCOL SPECIFICATION

HASH_I is signed using the responder’s private key and encoded in PKCS#1 format. The
PKCS#1 octets are then further encoded in base64 or hex.
The passphrase algorithm requires calculating:

- HK = hmac (hash (passphrase), initiator’s nonce | responder’s nonce)
- HASH_I = hmac (HK, version | sessionld | g"x | g"y | initiator’s JID)

The octets of HASH_I are simply encoded in base64 or hex.
The manner in which the initiator’s user agent gains access to the initiator’s credentials
is outside the scope of this specification.

* A set of conversation keys may optionally be included in the response. This should
typically be the case since security sessions are negotiated for the sole purpose of key
transport.

These values are then used to prepare the XML session3 element; this element is transmitted
via the existing Jabber iq mechanism:

<ig from="”initiator’s_JID” to="responder’s_JID” type="result” id=”
whatever”>
<query xmlns="jabber:security:session”>
<session3>...</session3>
</query>
</iqg>

3.5.9 Receiving And Processing the session3 PDU

The responder’s user agent employs the following algorithm to process each session3 PDU:

« The attribute values are checked against the values sent in the session2 PDU. A mis-
match results in an error code of 10008.

 The authenticator is verified. A failure results in an error code of 10007.

« Any keys included in the PDU are processed and added to the user agent’s key store.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

17

/'3 PROTOCOL SPECIFICATION

<ig from="responder’s_JID” to="initiator’s_JID” type="error” id=”
whatever”>
<error code=7"???">...</error>

</ig>

3.5.10 Session Key Material Derivation

TBA

3.6 Key Transport
3.6.1 Overview

Conversation keys are used to protect conversation data.

3.6.2 The Key Transport Mechanism

Conversation keys are transported using the symmetric key wrap feature of XML Encryption
embedded in the keyTransport PDU.

3.6.3 DIDs

<!ELEMENT keyTransport
(convId, payload, hmac) >
<I'ATTLIST keyTransport
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED >

<!ELEMENT convId
(#PCDATA)* >

<!-{}- These are actually instances of xenc:EncryptedKey -{}->
<!ELEMENT payload
(confKey, hmacKey) >

<!I'ELEMENT hmac
(#PCDATA)* >
<!IATTLIST hmac
encoding (base64 | hex) #REQUIRED >

18

/'3 PROTOCOL SPECIFICATION

3.6.4 Generating And Sending the keyTransport PDU

The sender’s user agent employs the following algorithm to generate the keyTransport PDU:

* Appropriate values for the version, initiator, responder, and sessionld attributes are
assembled. The version of this specification is ’1.0’. The values of initiator and re-
sponder MUST be the JIDs of the two participants who negotiated the security session,
respectively, and they MUST correspond to an existing security session.

+ The key’s identifier, convld, is assembled.

« The payload, which consists of the confidentiality key and the integrity key, is wrapped
in instances of xenc:EncryptedKey as follows:

The Type attribute of the xenc:EncryptedKey element MUST indicate 'content’.

- The Id, MimeType and Encoding attributes of the xenc:EncryptedKey element
MUST NOT be present.

- The xenc:EncryptionMethod element MUST be present, and the Algorithm at-
tribute MUST indicate a valid symmetric key wrap algorithm. Furthermore, the
algorithm MUST be the same as was negotiated for the security session.

- The ds:KeyInfo element MUST NOT be present. The key to use is SKc of the security
session.

- The xenc:CipherData element MUST be present, and it MUST use the CipherValue
choice.

+ The HMAC is computed using SKi of the security session over the following values:

the version attribute of the keyTransport element

the initiator attribute of the keyTransport element

the responder attribute of the keyTransport element

the sessionld attribute of the keyTransport element

19

/'3 PROTOCOL SPECIFICATION

- the character string used to construct the body of the convld element

These values are then used to prepare the XML keyTransport element; this element is trans-
mitted via the existing Jabber iq mechanism:

<ig from="sender’s_JID” to="receiver’s_JID” type="set” id="whatever”>
<query xmlns="jabber:security:keyTransport”>
<keyTransport>...</keyTransport>
</query>
</ig>

3.6.5 Receiving and Processing the keyTransport PDU

The receiver’s user agent employs the following algorithm to process each keyTransport PDU:

« The values of the version, initiator, responder, and sessionld are validated,; initiator, re-
sponder, and sessionld MUST indicate an existing security session. A version mismatch
results in an error code of 10000; an invalid security session results in an error of 10010.

« The payload, which consists of the confidentiality key and the intergrity key, is un-
wrapped. Any failures result in an error code of 10012.

« The body of the HMAC element is decoded into the actual HMAC octet string.

» The HMAC is validated. An invalid HMAC results in an error code of 10011.

« The keys are added to the user agent’s key store.

If any errors occur during processing, the error is communicated via the existing Jabber iq
mechanism:

<iq from="receiver’s_JID” to="sender’s_JID” type="error” id="whatever”
>

<error code="7???">...</error>
</ig>

20

/'3 PROTOCOL SPECIFICATION

3.7 Message Protection
3.7.1 Overview

The ultimate goal is, of course, the protection of conversation data. The protocol exchanges
described above allow the conversation participants to cryptographically protect their
conversation data using the conversation keys that they share.

3.7.2 The Message Protection Mechanism

A protected message is defined as a traditional Jabber message whose body content is extended
to include the transport of a cryptographically protected message body. The two key features
are

« First, the usual body element contains some arbitrary text. Those familiar with the
evolution of email protocols will recognize this trick as the same one used when MIME
was introduced.

« Second, the message contains a Jabber x element defining the Jabber:security:message
namespace; this element transports the protected message.

This mechanism has the advantages of allowing transparent integration with existing Jabber
servers and existing Jabber clients.

3.7.3 DTD

<!ELEMENT protectedMessage

(securitylLabel?, payload, hmac) >
<I'ATTLIST protectedMessage

version CDATA #REQUIRED

from CDATA #REQUIRED

to CDATA #REQUIRED

convId #REQUIRED

seqNum #REQUIRED >

<!'ELEMENT securitylLabel
(#PCDATA) * >

<!-{}- this is actually an instance of xenc:EncryptedData -{}->
<!ELEMENT payload
(#PCDATA)* >

<!ELEMENT hmac

21

/'3 PROTOCOL SPECIFICATION

(#PCDATA) * >
<I'ATTLIST hmac
encoding (base64 | hex) #REQUIRED >

3.7.4 Generating And Sending the protectedMessage PDU

The sender’s user agent employs the following algorithm to generate the protectedMessage
PDU:

« Appropriate values for the version, from, to, convld, and seqNum attributes are assem-
bled. The version of this specification is '1.0’. The value of convid MUST correspond to
an existing, valid key.

« The actual message body is encoded into a character string corresponding to a Jab-
ber message body element. This character string is then wrapped in an instance of
xenc:EncryptedData as follows:

The Type attribute of the xenc:EncryptedData element MUST indicate "element’.

- The 1d, MimeType and Encoding attributes of the xenc:EncryptedData element
MUST NOT be present.

- The xenc:EncryptionMethod element MUST be present, and the Algorithm at-
tribute MUST indicate a valid block encryption algorithm.

- The ds:KeyInfo element MUST NOT be present. The key to be used is the confiden-
tiality key indicated by the convld attribute.

- The xenc:CipherData element MUST be present, and it MUST use the CipherValue
choice.

« Using the HMAC key indicated by the convld attribute, the HMAC is computed over the
following values:

- the version attribute of the protectedMessage element
- the from attribute of the protectedMessage element

- the to attribute of the protectedMessage element

22

/'3 PROTOCOL SPECIFICATION

the convld attribute of the protectedMessage element

the seqNum attribute of the protectedMessage element

any securityLabel element

the character string used to construct the body of the payload element

These values are then used to prepare the XML protectedMessage element; this element is
transmitted via the existing Jabber message mechanism:

<message from="sender’s_JID” to="reveiver’s_JID” id="whatever”>
<body>The real body is protected.</body>
<x xmlns="”jabber:security:message”>
<protectedMessage>...</protectedMessage>
</ x>
</iqg>

3.7.5 Receiving and Processing the protectedMessage PDU

The receiver’s user agent employs the following algorithm to process each protectedMessage
PDU:

« The values of the version, from, to, convld, and seqNum are validated. A version
mismatch results in an error code of 10000. An unknown convld results in an error code
of 10015. If replay protection is utilized, a duplicate seqNum results in an error code of
10016.

« The body of the HMAC element is decoded into the actual HMAC octet string.

« The payload, which consists of the actual message body, is unwrapped. Any failures
result in an error code of 10012.

« The HMAC is validated. An invalid HMAC results in an error code of 10011.

If any errors occur during processing, the error is communicated via the existing Jabber iq
mechanism:

23

\J 4 DIFFIE-HELLMAN GROUPS

<ig from="receiver’s_JID” to="sender’s_JID” type="error” id="whatever”
>
<error code="7???">...</error>

</ig>

3.8 Requesting Keys

TBA

3.9 Conformance Profile

The following block encryption algorithms are required, as specified by XML Encryption:
« http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc
« http://www.w3.0rg/2001/04/xmlenc#aes128-cbc
* http://www.w3.0org/2001/04/xmlenc#aes256-cbc
The following symmetric key wrap algorithms are required, as specified by XML Encryption:
« http://www.w3.0rg/2001/04/xmlenc#kw-tripledes
+ http://www.w3.0rg/2001/04/xmlenc#kw-aes128
« http://www.w3.0org/2001/04/xmlenc#kw-aes256

4 Diffie-Hellman Groups

This protocol makes use of the following Diffie-Hellman groups adopted from IKE.

4.1 1024 bit Group, modp1024

The hexidecimal value of the prime, p, is

24

\J 4 DIFFIE-HELLMAN GROUPS

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
FFFFFFFF

FFFFFFFF
8AB7CCT4
CD3A431B
625E7EC6
5A899FA5
FFFFFFFF

CO90FDAA2
020BBEAG6
302BOA6D
F44C42E9
AE9F2411

2168C234
3B139B22
F25F1437
A637ED6B
7C4B1FE®6

C4C6628B
514A0879
4FE1356D
OBFF5CB6
49286651

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE65381

The decimal value of the generator, g, is 2.

4.2 2048 bit Group, modp2048

The hexidecimal value of the prime, p, is

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
C2007CB8
83655D23
670C354E
E39E772C
DE2BCBF6
15728E5A

FFFFFFFF
8A67CC74
CD3A431B
625E7EC6
5A899FA5
A163BF05
DCA3AD96
4ABC9804
180E8603
95581718
8AACAA68

C9QFDAA2
020BBEA6
302B0A6D
F44C42E9
AE9F2411
98DA4836
1C62F356
F1746C08
9B2783A2
3995497C
FFFFFFFF

2168C234
3B139B22
F25F1437
A637ED6B
7C4B1FE6
1C55D39A
208552BB
CA18217C
ECO7A28F
EA956AES
FFFFFFFF

C4C6628B
514A0879
4FE1356D
OBFF5CB6
49286651
69163FA8
9ED52907
32905E46
B5C55DF@
15D22618

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE45B3D
FD24CF5F
7096966D
2E36CE3B
6F4C52C9
98FA0510

The decimal value of the generator, g, is 2.

4.3 4096 bit Group, modp4096

The hexidecimal value of the prime, p, is

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
C2007CB8
83655023
670C354E
E39E772C
DE2BCBF6
15728E5A
ECFB8504
ABF5AESC
F12FFAQ6

FFFFFFFF
8A67CCT4
CD3A431B
625E7EC6
5A899FAS5
A163BF05
DCA3AD96
4ABC9804
180E8603
95581718
8AAAC42D
58DBEF0A
DB0933D7
D98AG864

CO90QFDAA2
020BBEAG6
302B0A6D
F44C42E9
AE9F2411
98DA4836
1C62F356
F1746C08
9B2783A2
3995497C
AD33170D
8AEA7157
1E8C94E0
D8760273

2168C234
3B139B22
F25F1437
A637ED6B
7C4B1FE®6
1C55D39A
208552BB
CA18217C
ECO7A28F
EA956AES
04507A33
5D060C7D
4A25619D
3EC86A64

25

C4C6628B
514A0879
4FE1356D
OBFF5CB6
49286651
69163FA8
9ED52907
32905E46
B5C55DF@
15D22618
A85521AB
B3970F85
CEE3D226
521F2B18

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE45B3D
FD24CF5F
7096966D
2E36CE3B
6F4C52C9
98FA0510
DF1CBAG64
AGET1E4C7
1AD2EEG6B
177B200C

\J 4 DIFFIE-HELLMAN GROUPS

BBE11757
43DB5BFC
88719A10
2583E9CA
287C5947
1F612970
93B4EA9S
FFFFFFFF

7A615D6C
EOFD108E
BDBAS5B26
2AD44CES
4E6BCOS5D
CEE2D7AF
8D8FDDC1
FFFFFFFF

770988C0
4B82D120
99C32718
DBBBC2DB
99B2964F
B81BDD76
86FFB7DC

BAD946E2
A9210801
6AF4E23C
04DESEF9
AQ90C3A2
2170481C
90A6CO8F

08E24FAQ
1A723C12
1A946834
2E8EFC14
233BA186
DRO69127
4DF435C9

74E5AB31
A787E6D7
B6150BDA
1FBECAAG
515BE7ED
D5B05AA9
34063199

The decimal value of the generator, g, is 2.

4.4 8192 bit Group, modp8192

The hexidecimal value of the prime, p, is

FFFFFFFF
29024E08
EF9519B3
E485B576
EE386BFB
C2007CB8
83655023
670C354E
E39E772C
DE2BCBF6
15728E5A
ECFB8504
ABF5AESC
F12FFAQ6
BBE11757
43DB5BFC
88719A10
2583E9CA
287C5947
1F612970
93B4EA98
36C3FAB4
F8FF9406
17972780
DB7F1447
5983CA01
DS5E702F
23A97ATE
CC8F6D7E
06A1D58B
DA56CIEC
12BF2D5B

FFFFFFFF
8A67CC74
CD3A431B
625E7EC6
5A899FA5
A163BF05
DCA3AD96
4ABC9804
180E8603
95581718
8AAAC42D
58DBEF0A
DB@933D7
D98ABB64
7A615D6C
EOFD108E
BDBA5B26
2AD44CE8
4E6BCO5D
CEE2D7AF
8D8FDDC1
D27C7026
AD9ES530E
865A8918
E6CC254B
C64B92EC
46980C82
36CC88BE
BF48E1D8
B7C5DA76
2EF29632
0B7474D6

C90FDAA2
020BBEAG6
302BOA6D
F44C42E9
AE9F2411
98DA4836
1C62F356
F1746C08
9B2783A2
3995497C
AD33170D
8AEA7157
1E8C94E0
D8760273
770988C0
4B82D120
99C32718
DBBBC2DB
99B2964F
B81BDD76
86FFB7DC
C1D4DCB2
E5DB382F
DA3EDBEB
33205151
FO32EA15
B5A84031
0F1D45B7
14CC5ED2
F550AA3D
387FE8D7
E694F91E

2168C234
3B139B22
F25F1437
A637EDG6B
7C4B1FEG6
1C55D39A
208552BB
CA18217C
ECO7A28F
EA956AES
04507 A33
5D060C7D
4A25619D
3EC86A64
BAD946E2
A9210801
6AF4E23C
04DESEF9
AQ90C3A2
2170481C
90A6C0O8F
602646DE
413001AE
CF9B14ED
2BD7AF42
D1721D03
900B1C9E
FF585AC5
OF8037E0
8ATFBFFO
6E3C0468
6DBE1159

26

C4C6628B
514A0879
4FE1356D
0BFF5CB6
49286651
69163 FA8
9ED52907
32905E46
B5C55DF@
15D22618
A85521AB
B3970F85
CEE3D226
521F2B18
08E24FAQ
1A723C12
1A946834
2E8EFC14
233BA186
DRO69127
4DF435C9
C9751E76
BO6A5S3ED
44CE6CBA
6FB8F401
F482D7CE
59E7C97F
4BD407B2
A79715EE
EB19CCB1
043E8F66
74A3926F

80DC1CD1
8E3404DD
6D51C245
F406B7ED
ECE45B3D
FD24CF5F
7096966D
2E36CE3B
6F4C52C9
98FAQ510
DF1CBAG4
AGE1EA4C7
1AD2EE6B
177B200C
74E5AB31
A787E6D7
B6150BDA
1FBECAAG
515BE7ED
D5B05AA9
34028492
3DBA37BD
9027D831
CED4BB1B
378CD2BF
6E74FEF6
BEC7E8F3
2B4154AA
F29BE328
A313D55C
3F4860EE
12FEESE4

/5 SECURITY CONSIDERATIONS

38777CB6 A932DF8C D8BEC4D0 73B931BA 3BC832B6 8D9DD300
741FA7BF 8AFC47ED 2576F693 6BA42466 3AAB639C 5AE4F568
3423B474 2BF1C978 238F16CB E39D652D E3FDB8BE FC848AD9
22222E04 A4037C07 13EB57A8 1A23F0C7 3473FC64 6CEA306B
4BCBC886 2F8385DD FA9D4B7F A2C087E8 79683303 EDS5SBDD3A
062B3CF5 B3A278A6 6D2A13F8 3F44F82D DF310EEQ 74AB6A36
4597E899 A0255DC1 64F31CC5 0846851D F9AB4819 5DED7EA1
B1D510BD 7EE74D73 FAF36BC3 1ECFA268 359046F4 EB879F92
4009438B 481C6CD7 889A002E DS5EE382B C9190DA6 FCO26E47
9558E447 5677E9AA 9E3050E2 765694DF C81F56E8 80B96E71
60C980DD 98EDD3DF FFFFFFFF FFFFFFFF

The decimal value of the generator, g, is 2.

5 Security Considerations

This entire document is about security.
This version of the protocol deliberately incorporates only a minimal amount of cryptographic
choice. Examples of possible choices that can readily added in future drafts include:

« Support for the Digital Signature Standard
« Support for Elliptic Curve Cryptography

« Additional symmetric algorithms

« Additional hash algorithms

Furthermore, additional credential formats, such as OpenPGP, may be addressed in future
drafts.

This version of the protocol includes a mechanism that derives a cryptographic key from a
passphrase shared by a community of users. It is impossible to overstate the security issues
that such a mechanism raises.

This version of the protocol does not include a specific rekeying capability. Data volumes
in IM environments are expected to be small, and the protocol prefers to simply instantiate
new conversation keys. It is straightforward to extend the security session protocol to enable
negotiation of a new key.

27

/6 EXAMPLES

6 Examples

6.1 Security Session

<ig from=’initiator@some.tld’
to="responder@other.tld’
type=’get’
id="whatever’ >
<x xmlns=’jabber:security:session>

uuuuuuu <sessionl_version="1.0"
uuuuuuuuuuuuuuuuu initiator="initiator@some.tld’
uuuuuuuuuuuuuuuuu responder=’responder@other.tld’
HHHHHHHHHHHHHHHHH sessionld="session11223344556677@some.tld’
uuuuuuuuuuuuuuuuu hmac=’hmac-shal’>

uuuuuuuuu <nonce_encoding="hex’>

uuuuuuuuu </nonce>

HHHHHHHHH <keyAgreement >

uuuuuuuuuuuu <dh_group="modp4096° >
uuuuuuuuuuuuuuu <publicKey_encoding=’base64’>
uuuuuuuuuuuuuuu </publicKey>

HHHHHHHHHHHH </dh>

HHHHHHHHH </keyAgreement >

uuuuuuuuu <algorithms>

uuuuuuuuuuuu <algorithm>

uuuuuuuuuuuuuuu <confAlg_cipher="3des-cbc’/>
uuuuuuuuuuuuuuu <hmacAlg._alg="hmac-shal’/>
HHHHHHHHHHHH </algorithm>

uuuuuuuuu </algorithms>

uuuuuuuuu <authnMethods >

uuuuuuuuuuuu <authnMethod>

uuuuuuuuuuuuuuu <digSig._alg=’rsa’>

HHHHHHHHHHHHHHHHHH <certificate_type=’"x509’_encoding="base64’>

uuuuuuuuuuuuuuuuuu </certificate>
uuuuuuuuuuuuuuu </digSig>
uuuuuuuuuuuu </authnMethod>
UUUUUUUUU </authnMethods>

HHHHHH </sessionl1>

o</ x>

</ig>

<iq.from=’responder@other.tld’

eoooto="initiator@some.tld’

ceootype='result’

ceoolid="whatever’_>

cewo<Xoxmlns=’jabber:security:session>
<session2 version='1.0’

28

/6 EXAMPLES

initiator="initiator@some.tld’
responder=’responder@other.tld’
sessionld="session11223344556677@some
hmac="hmac-shal’>

<nonce encoding=’hex’>

</nonce>

<keyAgreement>

<dh group="modp4096’ >
<publicKey encoding=’base64’>

</publicKey>
</dh>
</keyAgreement>
<algorithm>
<confAlg cipher=’3des-chc’/>
<hmacAlg alg=’hmac-shal’/>
</algorithm>
<authnMethod>
<digSig alg=’rsa’>

.tld’

<certificate type=’x509’ encoding='base64’>

</certificate>
</digSig>
</authnMethod>
<authenticator encoding='base64’>

</authenticator>
</session2>
</ x>
</ig>

<ig from=’initiator@some.tld’

to=’responder@other.tld’

type=’result’

id="whatever’ >

<x xmlns=’jabber:security:session>
HHHHHHH <session3_version="1.0"
uuuuuuuuuuuuuuuuu initiator="initiator@some.tld’
uuuuuuuuuuuuuuuuu responder=’responder@other.tld’
uuuuuuuuuuuuuuuuu sessionld="session11223344556677@some
uuuuuuuuuuuuuuuuu hmac=’hmac-shal’>

cen </ x>
</iqgq>

.tld’

29

/6 EXAMPLES

6.2 Key Transport

<ig type=’set’ >

<x xmlns=’jabber:security:key>
uuuuuu <keyTransport_version=’1.0’
uuuuuuuuuuuuuuuuuuuu initiator="initiator@some.tld’
uuuuuuuuuuuuuuuuuuuu responder="responder@other.tld’
HHHHHHHHHHHHHHHHHHHH sessionld=’session11223344556677@some.tld’>

uuuuuuuuu <EncryptedKey_xmlns="http://www.w3.0rg/2001/04/xmlenc#’
HHHHHHHHHHHHHHHHHHHHHHHH Type="http://www.w3.0rg/2001/04/xmlenc#Content

uuuuuuuuuuuu <EncryptionMethod_Algorithm="http://www.w3.0rg/2001/04/
xmlenc#kw-tripledes>
</EncryptionMethod>
<CipherData>
<CipherVvValue>

</CipherValue>
</CipherData>
</EncryptedKey>
<EncryptedKey xmlns="http://www.w3.0rg/2001/04/xmlenc#’
Type="http://www.w3.0rg/2001/04/xmlenc#Content
>
<EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/
xmlenc#kw-tripledes>
HHHHHHHHHHHH </EncryptionMethod>
uuuuuuuuuuuu <CipherData>
uuuuuuuuuuuuuuu <CipherValue>
uuuuuuuuuuuuuuu </CipherValue>
HHHHHHHHHHHH </CipherData>
HHHHHHHHH </EncryptedKey>
uuuuuuuuu <hmac_encoding="hex’>

UUUUUU </keyTransport>
o</ x>
</ig>

6.3 Message Protection

<message from=’initiator@some.tld’
to=’responder@other.tld’>
<body>
The real body is protected.

30

N/ 7 REFERENCES

</body>
<x xmlns=’jabber:security:message’>
<protectedMessage version=’1.0’
from="1initiator@some.tld’
to="responder@other.tld’
convId=’44d2d2d2d2@some. tld’
seqNum="1">
<securitylabel>
Confidential
</securitylabel>
<EncryptedData xmlns=’http://www.w3.0rg/2001/04/xmlenc#’
Type="http://www.w3.0rg/2001/04/xmlenc#Element
’>
<EncryptionMethod Algorithm=’http://www.w3.0rg/2001/04/
xmlenc#tripledes-cbhc>
HHHHHHHHHHHH </EncryptionMethod>
HHHHHHHHHHHH <CipherData>
<CipherValue>

uuuuuuuuuuuuuuu </CipherValue>
uuuuuuuuuuuu </CipherData>
HHHHHHHHH </EncryptedData>
uuuuuuuuu <hmac_encoding="hex’>

uuuuuu </protectedMessage>
cnn </ x>
</message>

7 References

”XML Encryption Syntax and Processing”; http://www.w3.org/TR/xmlenc-core
more to be added

31

	Introduction
	Requirements And Considerations
	Security Requirements
	Data Protection Requirements
	Data Classification Requirements
	The End To End Requirement
	Trust Issues
	Cryptosystem Design Considerations

	Environmental Considerations
	Usability Requirements
	Development And Deployment Requirements

	Protocol Specification
	Protocol Overview
	Definitions And Notation
	XML Processing
	Transporting Binary Content
	Transporting Encrypted Content
	HMAC Computation
	Performing Cryptographic Operations

	XML Namespaces
	Security Sessions
	Overview
	Security Session Negotiation
	DTDs
	Generating And Sending the session1 PDU
	Receiving And Processing the session1 PDU
	Generating And Sending the session2 PDU
	Receiving And Processing the session2 PDU
	Generating And Sending the session3 PDU
	Receiving And Processing the session3 PDU
	Session Key Material Derivation

	Key Transport
	Overview
	The Key Transport Mechanism
	DTDs
	Generating And Sending the keyTransport PDU
	Receiving and Processing the keyTransport PDU

	Message Protection
	Overview
	The Message Protection Mechanism
	DTD
	Generating And Sending the protectedMessage PDU
	Receiving and Processing the protectedMessage PDU

	Requesting Keys
	Conformance Profile

	Diffie-Hellman Groups
	1024 bit Group, modp1024
	2048 bit Group, modp2048
	4096 bit Group, modp4096
	8192 bit Group, modp8192

	Security Considerations
	Examples
	Security Session
	Key Transport
	Message Protection

	References

