
XEP-0031: A Framework For Securing Jabber Conversations

Paul Lloyd
mailto:paul_lloyd@hp.com

xmpp:paul_lloyd@jabber.hp.com(private)

2002-07-09
Version 0.2

Status Type Short Name
Deferred Standards Track N/A

Although the value and utility of contemporary instant messaging systems, like Jabber, are now in-
disputable, current security features to protect message data are generally inadequate for many deploy-
ments; this is particularly true in security conscious environments like large, commercial enterprises and
government agencies. These current features suffer from issues of scalability, usability, and supported
features. Furthermore, there is a lack of standardization. We present a protocol to allow communities of
Jabber users to apply cryptographic protection to selected conversation data.

mailto:paul_lloyd@hp.com
xmpp:paul_lloyd@jabber.hp.com (private)

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Requirements And Considerations 2
2.1 Security Requirements . 2

2.1.1 Data Protection Requirements . 2
2.1.2 Data Classification Requirements . 3
2.1.3 The End To End Requirement . 3
2.1.4 Trust Issues . 4
2.1.5 Cryptosystem Design Considerations 4

2.2 Environmental Considerations . 4
2.3 Usability Requirements . 4
2.4 Development And Deployment Requirements 5

3 Protocol Specification 6
3.1 Protocol Overview . 6
3.2 Definitions And Notation . 6
3.3 XML Processing . 7

3.3.1 Transporting Binary Content . 7
3.3.2 Transporting Encrypted Content . 7
3.3.3 HMAC Computation . 8
3.3.4 Performing Cryptographic Operations 8

3.4 XML Namespaces . 8
3.5 Security Sessions . 9

3.5.1 Overview . 9
3.5.2 Security Session Negotiation . 10
3.5.3 DTDs . 10
3.5.4 Generating And Sending the session1 PDU 12
3.5.5 Receiving And Processing the session1 PDU 13
3.5.6 Generating And Sending the session2 PDU 14
3.5.7 Receiving And Processing the session2 PDU 15
3.5.8 Generating And Sending the session3 PDU 16
3.5.9 Receiving And Processing the session3 PDU 17
3.5.10 Session Key Material Derivation . 18

3.6 Key Transport . 18
3.6.1 Overview . 18
3.6.2 The Key Transport Mechanism . 18
3.6.3 DTDs . 18
3.6.4 Generating And Sending the keyTransport PDU 19
3.6.5 Receiving and Processing the keyTransport PDU 20

3.7 Message Protection . 21
3.7.1 Overview . 21
3.7.2 The Message Protection Mechanism . 21

3.7.3 DTD . 21
3.7.4 Generating And Sending the protectedMessage PDU 22
3.7.5 Receiving and Processing the protectedMessage PDU 23

3.8 Requesting Keys . 24
3.9 Conformance Profile . 24

4 Diffie-Hellman Groups 24
4.1 1024 bit Group, modp1024 . 24
4.2 2048 bit Group, modp2048 . 25
4.3 4096 bit Group, modp4096 . 25
4.4 8192 bit Group, modp8192 . 26

5 Security Considerations 27

6 Examples 28
6.1 Security Session . 28
6.2 Key Transport . 30
6.3 Message Protection . 30

7 References 31

1 INTRODUCTION

1 Introduction
Instant messaging has clearly crossed the chasm from experimental to mainstream in a short
amount of time. It is particularly interesting to note the extent to which the employees
and affiliates of large enterprises have adopted instant messaging as part of their daily
professional lives. IM is no longer simply used on Friday evening to select which movie to
watch; it’s now used on Monday morning to select which company to acquire.
While the benefits of IM are clear and compelling, the risks associated with sharing sensitive
information in an IM environment are often overlooked. We need a mechanism that permits
communities of users to protect their IM conversations. This document presents an exten-
sion protocol that can be incorporated into the existing Jabber protocol to provide such a
mechanism. We hope that this protocol spurs both interest and further investigation into
mechanisms to protect Jabber conversations. We also hope that the Jabber community can
accelerate the adoption of standardized security mechanisms.
In addition to its ability to protect traditional messaging data, the proposed protocol may also
serve as a foundation for securing other data transported via other Jabber extensions.
We use the following terms throughout this document to describe the most relevant aspects
of the IM environment that we wish to address:

• user. A user is simply any Jabber user. Users are uniquely identified by a JID; they
connect to Jabber hosts using a Jabber node.
Users produce and consume information, and we wish to provide them with mecha-
nisms that can be used to protect this information.

• community. A community is a collection of users who wish to communicate via
Jabber. No restrictions or assumptions are made about the size of communities or the
geographical, organizational, or national attributes of the members. Communities are
assumed to be dynamic and ad-hoc. Users typically join communities by the simple act
of invitation. All members of a community are assumed to be peers.
The members of communities share information among themselves, and we wish to
provide them with mechanisms that can permit information to only be shared by
community members.

• conversation. A conversation is the set of messages that flows among the members of
a community via some network. Conversations consist of both the actual conversation
data produced and consumed by the various users as well as the Jabber protocol
elements that transport it. Members participate in a conversation when they are the
source or destination of this traffic.
In hostile network environments, like the Internet, conversation data is vulnerable to a
variety of well-known attacks.

1

2 REQUIREMENTS AND CONSIDERATIONS

Other Jabber and IM terms are used in a traditional, intuitive fashion.

2 Requirements And Considerations
The proposed protocol is designed to address the specific requirements and considerations
presented in this section.

2.1 Security Requirements
2.1.1 Data Protection Requirements

A secure IM system must permit conversation participants to preserve the following proper-
ties of their conversation data:

• confidentiality. Conversation data must only be disclosed to authorized recipients

• integrity. Conversation data must not be altered

• data origin authentication. Recipients must be able to determine the identity of the
sender and trust that the message did, in fact, come from the sender. It is important
to note that this requirement does not include the requirement of a durable digital
signature on conversation data.

• replay protection. Recipients must be able to detect and ignore duplicate conversation
data.

These are established, traditional goals of information security applied to the conversation
data. In the IM environment, these goals protect against these attacks:

• eavesdropping, snooping, etc.

• masquerading as a conversation participant

• forging messages

2

2 REQUIREMENTS AND CONSIDERATIONS

Preserving the availability of conversation data is not addressed by this protocol.
Preserving the anonymity of conversation participants is an interesting topic which we defer
for future exploration.
Finally, note that this protocol does not concern any authentication between a Jabber node
and a Jabber host.

2.1.2 Data Classification Requirements

A secure IM system must support a data classification feature through the use of security
labeling. Conversation participants must be able to associate a security label with each piece
of conversation data. This label may be used to specify a data classification level for the
conversation data.

2.1.3 The End To End Requirement

It is easy to imagine Jabber systems in which the servers play active, fundamental roles in the
protection of conversation data. Such systems could offer many advantages, like:

• allowing the servers to function as credential issuing authorities,

• allowing the servers to function as policy enforcement points.

Unfortunately, such systems have significant disadvantages when one considers the nature
of instant messaging:

• Many servers may be untrusted, public servers.

• In many conversation communities, decisions of trust and membership can only be
adequately defined by the members themselves.

• In many conversation communities, membership in the community changes in real
time based upon the dynamics of the conversation.

• In many conversation communities, the data classifaction of the conversation changes
in real time based upon the dynamics of the conversation.

3

2 REQUIREMENTS AND CONSIDERATIONS

Furthermore, thewidespread use of gateways to external IM systems is a further complication.
Based on this analysis, we propose that security be entirely controlled in an end to end fashion
by the conversation participants themselves via their user agent software.

2.1.4 Trust Issues

We believe that, ultimately, trust decisions are in the hands of the conversation participants.
A security protocol and appropriate conforming user agents must provide a mechanism for
them to make informed decisions.

2.1.5 Cryptosystem Design Considerations

One of the accepted axioms of security is that people must avoid the temptation to start from
scratch and produce new, untested algorithms and protocols. History has demonstrated that
such approaches are likely to contain flaws and that considerable time and effort are required
to identify and address all of these flaws. Any new security protocol should be based on
existing, established algorithms and protocols.

2.2 Environmental Considerations
Any new IM security protocol must integrate smoothly into the existing IM environment, and
it must also recognize the nature of the transactions performed by conversation participants.
These considerations are especially important:

• dynamic communities. The members of a community are defined in near real time by
the existing members.

• dynamic conversations. Conversations may involve any possible subset of the entire
set of community members.

Addressing these considerations becomes especially crucial when selecting a conference
keying mechanism.

2.3 Usability Requirements
Given the requirement to place the responsibility for the protection of conversation data in
the hands of the participants, it is imperative to address some fundamental usability issues:

4

2 REQUIREMENTS AND CONSIDERATIONS

• First, overall ease of use is a requirement. For protocol purposes, one implication is that
some form of authentication via passphrases is necessary. While we recognize that this
can have appalling consequences, especially when we realize that a passphrase may be
shared by all of the community members, we also recognize the utility.

• PKIs are well established in many large organizations, and some communities will
prefer to rely on credentials issued from these authorities. To ensure ease of use, we
must strive to allow the use of existing PKI credentials and trust models rather than
impose closed, Jabber-specific credentials.

• Finally, performance must not be negatively impacted; this is particularly true if we ac-
cept that most communities are composed of human users conversing in real time. For
protocol purposes, one obvious implication is the desire to minimize computationally
expensive public key operations.

We note that, in practice, the design and construction of user agents will also have a major
impact on ease of use.

2.4 Development And Deployment Requirements
To successfully integrate into the existing Jabber environment, an extension protocol for
security must satisfy the following:

• It must be an optional extension of the existing Jabber protocol.

• It must be transparent to existing Jabber servers.

• It must function gracefully in cases where some community members are not running
a user agent that supports the protocol.

• It must make good use of XML.

• It must avoid encumbered algorithms.

• It must be straightforward to implement using widely available cryptographic toolkits.

5

3 PROTOCOL SPECIFICATION

• It must not require a PKI.

Failure to accommodate these will impede or prohibit adoption of any security protocol.

3 Protocol Specification
3.1 Protocol Overview
Ultimately, conversation data is protected by the application of keyed cryptographic oper-
ations. One operation is used to provide confidentiality, and a separate operation is used
to provide integrity and data origin authentication. The keys used to parameterize these
operations are called conversation keys. Each conversation should have its own unique set of
conversation keys shared among the conversation participants.
Conversation keys are transported among the conversation participants within a negotiated
security session. A security session allows pairs of conversation participants to securely share
conversation keys throught all participants in the conversation as required.

3.2 Definitions And Notation
The following terms are used throughout this specification:

• initiator. The initiator is the user who requested a security session negotiation. Initia-
tor’s are identified by their JID.

• responder. The responder is the user who responded to a security session negotiation
request. Responder’s are identified by their JID.

• hmac. This indicates the HMAC algorithm. The notation hmac (key, value) indicates the
HMAC computation of value using key.

• concatentation operator. The ’|’ character is used in character or octet string expres-
sions to indicate concatenation.

• security session ID. A character string that uniquely identifies a security session be-
tween two users. Security session IDs MUST only consist of Letters, Digits, and these
characters: ’.’, ’+’, ’-’, ’_’, ’@’. Security session IDs are case sensitive.

6

3 PROTOCOL SPECIFICATION

• SS. This term indicates the security session secret that is agreed to during a security
session negotiation.

• SKc. This term indicates the keying material used within a security session to protect
confidentiality. The SKc is derived from the security session secret, SS.

• SKi. This term indicates the keying material used within a security session to protect
integrity and to provide authnetication. The SKi is derived from the security session
secret, SS.

• conversation key ID. A character string that uniquely identifies a conversation key
shared by a community of users. Conversation key IDs MUST only consist of Letters,
Digits, and these characters: ’.’, ’+’, ’-’, ’_’, ’@’. Conversation key IDs are case sensitive.
Conversation key IDs SHOULD be generated from at least 128 random bits.

• passphrase ID. A character string that uniquely identifies a passphrase shared by a
community of users. Passphrase IDs MUST only consist of Letters, Digits, and these
characters: ’.’, ’+’, ’-’, ’_’, ’@’. Passphrase IDs are case sensitive.

3.3 XML Processing
Since cryptographic operations are applied to data that is transported within an XML stream,
the protocol defines a set of rules to ensure a consistent interpretation by all conversation
participants.

3.3.1 Transporting Binary Content

Binary data, such as the result of an HMAC, is always transported in an encoded form; the two
supported encoding schemes are base64 and hex.
Senders MAY include arbitrary white space within the character stream. Senders SHOULD
NOT include any other characters outside of the encoding set.
Receivers MUST ignore all characters not in the encoding set.

3.3.2 Transporting Encrypted Content

Encrypted data, including wrapped cryptographic keys, are always wrapped per XML Encryp-
tion.

7

3 PROTOCOL SPECIFICATION

3.3.3 HMAC Computation

HMACs are computed over a specific collection of attribute values and character data; when
computing an HMAC the following rules apply:

• All characters MUST be encoded in UTF-8.

• The octets in each character MUST be processed in network byte order.

• For a given element, the attribute values that are HMACed MUST be processed in the
specified order regardless of the order in which they appear in the element tag.

• For each attribute value, the computation MUST only include characters from the
anticipated set defined in this specification; in particular, white space MUST always be
ignored.

• For character data that is represented in an encoded form, such as base64 or hex, the
computation MUST only include valid characters from the encoding set.

3.3.4 Performing Cryptographic Operations

The following algorithm is used to encrypt a character string, such as an XML element:

• The character string MUST be encoded in UTF-8.

• The octets in each character MUST be processed in network byte order.

• Appropriate cryptographic algorithm parameters, such as an IV for a block cipher, are
generated.

3.4 XML Namespaces
In order to integrate smoothly with the existing Jabber protocol, this protocol utilizes a new
XML namespace, jabber:security.

8

3 PROTOCOL SPECIFICATION

3.5 Security Sessions
3.5.1 Overview

A security session is a pair-wise relationship between two users in which the users have
achieved the following:

• They have mutually authenticated each other using credentials acceptable to both.

• They have agreed on a set of key material known only to both.

Security sessions are identified by a 3-tuple consisting of the following items:

• initiator. This is the JID of the user who initiated the session.

• responder. This is the JID of the user who responded to the initiator’s request.

• sessionId. A label generated by the initiator.

Security sessions are used to transport conversation keys between the conversation partici-
pants.
Scalabilty is an immediate, obvious concern with such an approach. We expect this approach
to be viable in practice because:

• The number of participants in typical, interactive conversations is generally on the
order of 10ˆ1.

• New participants are usually invited to dynamically join a conversation by being
invited by an existing participant; this existing participant is the only one who needs
to establish a security session with the new participant, because this single security
session can be used to transport all of the required conversation keys.

• User agents can permit the lifetime of security sessions to last long enough to allow
transport of conversation keys for a variety of converstions.

• Conversation keys can be established with a suitable lifetime.

Other approaches, including the incorporation of more sophisticated conference keying
algorithms, are a topic for future exploration.

9

3 PROTOCOL SPECIFICATION

3.5.2 Security Session Negotiation

Security sessions are negotiated using an authenticated Diffie-Hellman key agreement ex-
change. The two goals of the exchange are to perform the mutual authentication and to agree
to a secret that is know only to each.
The exchange also allows the parties to negotiate the various algorithms and authentication
mechanisms that will be used.
Once the pair agree on a shared secret, they each derive key material from the secret; this
key material is used to securely transport the conversation keys, which are used to actually
protect conversation data.
The protocol data units (PDUs) that comprise the exchange are transported within existing
Jabber protocol elements.

3.5.3 DTDs

<!ELEMENT session1
(nonce , keyAgreement , algorithms , authnMethods) >

<!ATTLIST session1
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac -sha1) #REQUIRED >

<!ELEMENT nonce
(# PCDATA)* >

<!ATTLIST nonce
encoding (base64 | hex) #REQUIRED >

<!ELEMENT keyAgreement
(dh) >

<!ELEMENT dh
(publicKey) >

<!ATTLIST dh
group (modp1024 | modp2048 | modp4096 | modp8192) #REQUIRED

>

<!ELEMENT publicKey
(# PCDATA)* >

<!ATTLIST publicKey
encoding (base64 | hex) #REQUIRED >

<!ELEMENT algorithms
(algorithm)+ >

<!ELEMENT algorithm

10

3 PROTOCOL SPECIFICATION

(confAlg , hmacAlg) >

<!ELEMENT confAlg EMPTY >
<!ATTLIST confAlg

cipher (3des -cbc | aes -128-cbc | aes -256-cbc) #REQUIRED >

<!ELEMENT hmacAlg EMPTY >
<!ATTLIST hmacAlg

alg (hmac -sha1 | hmac -md5) #REQUIRED >

<!ELEMENT authnMethods
(authnMethod)+ >

<!ELEMENT authnMethod
(digSig | passphrase) >

<!ELEMENT digSig
(certificate+, caCertificate *) >

<!ATTLIST digSig
alg (rsa) #REQUIRED >

<!ELEMENT certificate
(# PCDATA)* >

<!ATTLIST certificate
type (x509 | pkcs7) #REQUIRED
encoding (base64 | hex) #REQUIRED >

<!ELEMENT caCertificate
(# PCDATA)* >

<!ATTLIST caCertificate
type (x509 | pkcs7) #REQUIRED
encoding (base64 | hex) #REQUIRED >

<!ELEMENT passphrase EMPTY >
<!ATTLIST passphrase

passphraseId CDATA #REQUIRED >

<!ELEMENT session2
(nonce , keyAgreement , algorithm , authnMethod , authenticator)

>
<!ATTLIST session2

version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac -sha1) #REQUIRED >

<!ELEMENT authenticator

11

3 PROTOCOL SPECIFICATION

(# PCDATA)* >
<!ATTLIST authenticator

encoding (base64 | hex) #REQUIRED >

<!ELEMENT session3
(authenticator , keyTransport *) >

<!ATTLIST session3
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED
hmac (hmac -sha1) #REQUIRED >

3.5.4 Generating And Sending the session1 PDU

The initiator’s user agent employs the following algorithm to generate the session1 PDU:

• Appropriate values for the version, initiator, responder, sessionId, and hmac attributes
are assembled. The version of this specification is ’1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively.

• The nonce is prepared by first generating a string of 20 random octets (160 random
bits). The octets are then encoded into a string of 40 hex characters representing the
random string.

• A Diffie-Hellman group is selected. The appropriate values for g and p will be used to
generate the initiator’s public key.

• An ephemeral private key, x, is generated using g and p for the selected group. This key
MUST be generated using an appropriate random number source. The corresponding
public key, gˆx, is generated and encoded.

• The desired set of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which these algorithms are selected and all related policy issues are outside
the scope of this specification.

• The desired set of authentication algorithms is selected. The manner in which these
algorithms are selected and all related policy issues are outside the scope of this spec-
ification. When the digital signature form of authentication is selected, the relevant

12

3 PROTOCOL SPECIFICATION

end-entity certificate and, optionally, a chain of CA certificates representing a valida-
tion path, is assembled and encoded. A set of trusted CA certificates MAY optionally
be included via caCertificate elements; if so, the set MUST include the issuer of the
initiator’s end-entity certificate.

These values are then used to prepare the XML session1 element; this element is transmitted
via the existing Jabber iq mechanism:

<iq from=”initiator ’s␣JID” to=”responder ’s␣JID” type=”get” id=”
whatever”>
<query xmlns=”jabber:security:session”>

<session1 >...</session1 >
</query >

</iq>

3.5.5 Receiving And Processing the session1 PDU

The responder’s user agent employs the following algorithm to process each session1 PDU:

• The version and hmac attributes are checked against the values supported by the user
agent. An unsupported version results in an error code of 10000, and an unsupported
hmac results in an error code of 10001. The responder attribute MUST match the JID of
the receiver; a mismatch results in an error code of 10009

• The nonce is decoded, and its length is checked. The nonce may also be checked to
detect replays. An invalid nonce results in an error code of 10002.

• The Diffie-Hellman group is checked against the values supported by the user agent. An
unsupported group results in an error code of 10003

• The desired confidentiality and HMAC cryptographic algorithms are selected from the
proposed set. The manner in which these algorithms are selected and all related policy
issues are outside the scope of this specification. If none of the proposed algorithms are
supported, an error code of 10004 occurs.

• The desired authentication algorithm is selected from the proposed set. The manner in
which this algorithm is selected and all related policy issues are outside the scope of this
specification. In the digital signature case, the responder’s end-entity certificate MUST
be issued by one of the trusted CAs listed in the session1 PDU or by the same issuer as
the initiator’s end-entity certificate. If none of the proposed algorithms are supported,

13

3 PROTOCOL SPECIFICATION

an error code of 10005 results. If the responder does not have acceptable credentials,
an error code of 10006 occurs.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

<iq from=”responder ’s␣JID” to=”initiator ’s␣JID” type=”error” id=”
whatever”>
<error code=”???”>...</error >

</iq>

If no errors occur, then the responder’s user agent proceeds with the session2 PDU.

3.5.6 Generating And Sending the session2 PDU

The responder’s user agent employs the following algorithm to generate the session2 PDU:

• Appropriate values for the version, initiator, responder, sessionId, and hmac attributes
are assembled. The version of this specification is ’1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively. The sessionId and
hmac values MUSTmatch the sessionId and hmac values contained in the session1 PDU.

• The nonce is prepared by first generating a string of 20 random octets (160 random
bits). The octets are then encoded into a string of 40 hex characters representing the
random string.

• An ephemeral private key, y, is generated using g and p for the group indicated by
the session1 PDU. This key MUST be generated using an appropriate random number
source. The corresponding public key, gˆy, is generated and encoded.

• The desired pair of confidentiality and HMAC cryptographic algorithms is selected. The
manner in which this pair is selected and all related policy issues are outside the scope
of this specification.

• The desired authentication algorithm is selected. The manner in which this algorithm
is selected and all related policy issues are outside the scope of this specification.
When the digital signature form of authentication is selected, the relevant end-entity
certificate and, optionally, a chain of CA certificates representing a validation path, is
assembled and encoded.

14

3 PROTOCOL SPECIFICATION

• Based on the selected authentication algorithm, the responder’s authenticator is
constructed. A digital signature algorithm requires calculating:

– HK = hmac (initiator’s nonce | responder’s nonce, gˆxy)

– HASH_R = hmac (HK, version | sessionId | gˆy | gˆx | responder’s JID)

HASH_R is signed using the responder’s private key and encoded in PKCS#1 format. The
PKCS#1 octets are then further encoded in base64 or hex.
The passphrase algorithm requires calculating:

– HK = hmac (hash (passphrase), initiator’s nonce | responder’s nonce)

– HASH_R = hmac (HK, version | sessionId | gˆy | gˆx | responder’s JID)

The octets of HASH_R are simply encoded in base64 or hex.
The manner in which the responder’s user agent gains access to the responder’s
credentials is outside the scope of this specification.

These values are then used to prepare the XML session2 element; this element is transmitted
via the existing Jabber iq mechanism:

<iq from=”responder ’s␣JID” to=”initiator ’s␣JID” type=”result” id=”
whatever”>
<query xmlns=”jabber:security:session”>

<session2 >...</session2 >
</query >

</iq>

3.5.7 Receiving And Processing the session2 PDU

The initiator’s user agent employs the following algorithm to process each session2 PDU:

• The attribute values are checked against the values sent in the session1 PDU. A mis-
match results in an error code of 10008.

• The nonce is decoded, and its length is checked. The nonce may also be checked to
detect replays. An invalid nonce results in an error code of 10002.

15

3 PROTOCOL SPECIFICATION

• The Diffie-Hellman group is checked against the value sent in the session1 PDU. A
mismatch results in an error code of 10003

• The confidentiality and HMAC cryptographic algorithms are validated against the set
proposed in the session1 PDU. A mismatch results in an error code of 10004.

• The authentication algorithm is validated against the set proposed in the session1 PDU.
A mismatch results in an error code of 10005.

• The authenticator is verified. A failure results in an error code of 10007.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

<iq from=”initiator ’s␣JID” to=”responder ’s␣JID” type=”error” id=”
whatever”>
<error code=”???”>...</error >

</iq>

If no errors occur, then the initiator’s user agent proceeds with the session3 PDU.

3.5.8 Generating And Sending the session3 PDU

The initiator’s user agent employs the following algorithm to generate the session3 PDU:

• Appropriate values for the version, initiator, responder, sessionId, and hmac attributes
are assembled. The version of this specification is ’1.0’. The values of initiator and
responder MUST be the JIDs of the two participants, respectively. The sessionId and
hmac values MUST match the sessionId and hmac values contained in both the session1
and session2 PDUs.

• Based on the selected authentication algorithm, the initiator’s authenticator is con-
structed. A digital signature algorithm requires calculating:

– HK = hmac (initiator’s nonce | responder’s nonce, gˆxy)

– HASH_I = hmac (HK, version | sessionId | gˆx | gˆy | initiator’s JID)

16

3 PROTOCOL SPECIFICATION

HASH_I is signed using the responder’s private key and encoded in PKCS#1 format. The
PKCS#1 octets are then further encoded in base64 or hex.
The passphrase algorithm requires calculating:

– HK = hmac (hash (passphrase), initiator’s nonce | responder’s nonce)

– HASH_I = hmac (HK, version | sessionId | gˆx | gˆy | initiator’s JID)

The octets of HASH_I are simply encoded in base64 or hex.
The manner in which the initiator’s user agent gains access to the initiator’s credentials
is outside the scope of this specification.

• A set of conversation keys may optionally be included in the response. This should
typically be the case since security sessions are negotiated for the sole purpose of key
transport.

These values are then used to prepare the XML session3 element; this element is transmitted
via the existing Jabber iq mechanism:

<iq from=”initiator ’s␣JID” to=”responder ’s␣JID” type=”result” id=”
whatever”>
<query xmlns=”jabber:security:session”>

<session3 >...</session3 >
</query >

</iq>

3.5.9 Receiving And Processing the session3 PDU

The responder’s user agent employs the following algorithm to process each session3 PDU:

• The attribute values are checked against the values sent in the session2 PDU. A mis-
match results in an error code of 10008.

• The authenticator is verified. A failure results in an error code of 10007.

• Any keys included in the PDU are processed and added to the user agent’s key store.

If any errors occur during processing, the session negotiation fails, and the error is communi-
cated via the existing Jabber iq mechanism:

17

3 PROTOCOL SPECIFICATION

<iq from=”responder ’s␣JID” to=”initiator ’s␣JID” type=”error” id=”
whatever”>
<error code=”???”>...</error >

</iq>

3.5.10 Session Key Material Derivation

TBA

3.6 Key Transport
3.6.1 Overview

Conversation keys are used to protect conversation data.

3.6.2 The Key Transport Mechanism

Conversation keys are transported using the symmetric key wrap feature of XML Encryption
embedded in the keyTransport PDU.

3.6.3 DTDs

<!ELEMENT keyTransport
(convId , payload , hmac) >

<!ATTLIST keyTransport
version CDATA #REQUIRED
initiator CDATA #REQUIRED
responder CDATA #REQUIRED
sessionId CDATA #REQUIRED >

<!ELEMENT convId
(# PCDATA)* >

<!-{}- These are actually instances of xenc:EncryptedKey -{}->
<!ELEMENT payload

(confKey , hmacKey) >

<!ELEMENT hmac
(# PCDATA)* >

<!ATTLIST hmac
encoding (base64 | hex) #REQUIRED >

18

3 PROTOCOL SPECIFICATION

3.6.4 Generating And Sending the keyTransport PDU

The sender’s user agent employs the following algorithm to generate the keyTransport PDU:

• Appropriate values for the version, initiator, responder, and sessionId attributes are
assembled. The version of this specification is ’1.0’. The values of initiator and re-
sponder MUST be the JIDs of the two participants who negotiated the security session,
respectively, and they MUST correspond to an existing security session.

• The key’s identifier, convId, is assembled.

• The payload, which consists of the confidentiality key and the integrity key, is wrapped
in instances of xenc:EncryptedKey as follows:

– The Type attribute of the xenc:EncryptedKey element MUST indicate ’content’.

– The Id, MimeType and Encoding attributes of the xenc:EncryptedKey element
MUST NOT be present.

– The xenc:EncryptionMethod element MUST be present, and the Algorithm at-
tribute MUST indicate a valid symmetric key wrap algorithm. Furthermore, the
algorithm MUST be the same as was negotiated for the security session.

– The ds:KeyInfo elementMUSTNOT be present. The key to use is SKc of the security
session.

– The xenc:CipherData element MUST be present, and it MUST use the CipherValue
choice.

• The HMAC is computed using SKi of the security session over the following values:

– the version attribute of the keyTransport element

– the initiator attribute of the keyTransport element

– the responder attribute of the keyTransport element

– the sessionId attribute of the keyTransport element

19

3 PROTOCOL SPECIFICATION

– the character string used to construct the body of the convId element

These values are then used to prepare the XML keyTransport element; this element is trans-
mitted via the existing Jabber iq mechanism:

<iq from=”sender ’s␣JID” to=”receiver ’s␣JID” type=”set” id=”whatever”>
<query xmlns=”jabber:security:keyTransport”>

<keyTransport >...</keyTransport >
</query >

</iq>

3.6.5 Receiving and Processing the keyTransport PDU

The receiver’s user agent employs the following algorithm to process each keyTransport PDU:

• The values of the version, initiator, responder, and sessionId are validated; initiator, re-
sponder, and sessionId MUST indicate an existing security session. A version mismatch
results in an error code of 10000; an invalid security session results in an error of 10010.

• The payload, which consists of the confidentiality key and the intergrity key, is un-
wrapped. Any failures result in an error code of 10012.

• The body of the HMAC element is decoded into the actual HMAC octet string.

• The HMAC is validated. An invalid HMAC results in an error code of 10011.

• The keys are added to the user agent’s key store.

If any errors occur during processing, the error is communicated via the existing Jabber iq
mechanism:

<iq from=”receiver ’s␣JID” to=”sender ’s␣JID” type=”error” id=”whatever”
>
<error code=”???”>...</error >

</iq>

20

3 PROTOCOL SPECIFICATION

3.7 Message Protection
3.7.1 Overview

The ultimate goal is, of course, the protection of conversation data. The protocol exchanges
described above allow the conversation participants to cryptographically protect their
conversation data using the conversation keys that they share.

3.7.2 The Message Protection Mechanism

Aprotectedmessage is defined as a traditional Jabbermessagewhose body content is extended
to include the transport of a cryptographically protected message body. The two key features
are

• First, the usual body element contains some arbitrary text. Those familiar with the
evolution of email protocols will recognize this trick as the same one used when MIME
was introduced.

• Second, the message contains a Jabber x element defining the Jabber:security:message
namespace; this element transports the protected message.

This mechanism has the advantages of allowing transparent integration with existing Jabber
servers and existing Jabber clients.

3.7.3 DTD

<!ELEMENT protectedMessage
(securityLabel?, payload , hmac) >

<!ATTLIST protectedMessage
version CDATA #REQUIRED
from CDATA #REQUIRED
to CDATA #REQUIRED
convId #REQUIRED
seqNum #REQUIRED >

<!ELEMENT securityLabel
(# PCDATA)* >

<!-{}- this is actually an instance of xenc:EncryptedData -{}->
<!ELEMENT payload

(# PCDATA)* >

<!ELEMENT hmac

21

3 PROTOCOL SPECIFICATION

(# PCDATA)* >
<!ATTLIST hmac

encoding (base64 | hex) #REQUIRED >

3.7.4 Generating And Sending the protectedMessage PDU

The sender’s user agent employs the following algorithm to generate the protectedMessage
PDU:

• Appropriate values for the version, from, to, convId, and seqNum attributes are assem-
bled. The version of this specification is ’1.0’. The value of convId MUST correspond to
an existing, valid key.

• The actual message body is encoded into a character string corresponding to a Jab-
ber message body element. This character string is then wrapped in an instance of
xenc:EncryptedData as follows:

– The Type attribute of the xenc:EncryptedData element MUST indicate ’element’.

– The Id, MimeType and Encoding attributes of the xenc:EncryptedData element
MUST NOT be present.

– The xenc:EncryptionMethod element MUST be present, and the Algorithm at-
tribute MUST indicate a valid block encryption algorithm.

– The ds:KeyInfo element MUST NOT be present. The key to be used is the confiden-
tiality key indicated by the convId attribute.

– The xenc:CipherData element MUST be present, and it MUST use the CipherValue
choice.

• Using the HMAC key indicated by the convId attribute, the HMAC is computed over the
following values:

– the version attribute of the protectedMessage element

– the from attribute of the protectedMessage element

– the to attribute of the protectedMessage element

22

3 PROTOCOL SPECIFICATION

– the convId attribute of the protectedMessage element

– the seqNum attribute of the protectedMessage element

– any securityLabel element

– the character string used to construct the body of the payload element

These values are then used to prepare the XML protectedMessage element; this element is
transmitted via the existing Jabber message mechanism:

<message from=”sender ’s␣JID” to=”reveiver ’s␣JID” id=”whatever”>
<body>The real body is protected.</body>
<x xmlns=”jabber:security:message”>

<protectedMessage >...</protectedMessage >
</x>

</iq>

3.7.5 Receiving and Processing the protectedMessage PDU

The receiver’s user agent employs the following algorithm to process each protectedMessage
PDU:

• The values of the version, from, to, convId, and seqNum are validated. A version
mismatch results in an error code of 10000. An unknown convId results in an error code
of 10015. If replay protection is utilized, a duplicate seqNum results in an error code of
10016.

• The body of the HMAC element is decoded into the actual HMAC octet string.

• The payload, which consists of the actual message body, is unwrapped. Any failures
result in an error code of 10012.

• The HMAC is validated. An invalid HMAC results in an error code of 10011.

If any errors occur during processing, the error is communicated via the existing Jabber iq
mechanism:

23

4 DIFFIE-HELLMAN GROUPS

<iq from=”receiver ’s␣JID” to=”sender ’s␣JID” type=”error” id=”whatever”
>
<error code=”???”>...</error >

</iq>

3.8 Requesting Keys
TBA

3.9 Conformance Profile
The following block encryption algorithms are required, as specified by XML Encryption:

• http://www.w3.org/2001/04/xmlenc#tripledes-cbc

• http://www.w3.org/2001/04/xmlenc#aes128-cbc

• http://www.w3.org/2001/04/xmlenc#aes256-cbc

The following symmetric key wrap algorithms are required, as specified by XML Encryption:

• http://www.w3.org/2001/04/xmlenc#kw-tripledes

• http://www.w3.org/2001/04/xmlenc#kw-aes128

• http://www.w3.org/2001/04/xmlenc#kw-aes256

4 Diffie-Hellman Groups
This protocol makes use of the following Diffie-Hellman groups adopted from IKE.

4.1 1024 bit Group, modp1024
The hexidecimal value of the prime, p, is

24

4 DIFFIE-HELLMAN GROUPS

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
FFFFFFFF FFFFFFFF

The decimal value of the generator, g, is 2.

4.2 2048 bit Group, modp2048
The hexidecimal value of the prime, p, is

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AACAA68 FFFFFFFF FFFFFFFF

The decimal value of the generator, g, is 2.

4.3 4096 bit Group, modp4096
The hexidecimal value of the prime, p, is

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C

25

4 DIFFIE-HELLMAN GROUPS

BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719 A10 BDBA5B26 99 C32718 6AF4E23C 1A946834 B6150BDA
2583 E9CA 2AD44CE8 DBBBC2DB 04 DE8EF9 2E8EFC14 1FBECAA6
287 C5947 4E6BC05D 99 B2964F A090C3A2 233 BA186 515 BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93 B4EA98 8D8FDDC1 86 FFB7DC 90 A6C08F 4DF435C9 34063199
FFFFFFFF FFFFFFFF

The decimal value of the generator, g, is 2.

4.4 8192 bit Group, modp8192
The hexidecimal value of the prime, p, is

FFFFFFFF FFFFFFFF C90FDAA2 2168 C234 C4C6628B 80 DC1CD1
29024 E08 8A67CC74 020 BBEA6 3B139B22 514 A0879 8E3404DD
EF9519B3 CD3A431B 302 B0A6D F25F1437 4FE1356D 6D51C245
E485B576 625 E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
C2007CB8 A163BF05 98 DA4836 1C55D39A 69163 FA8 FD24CF5F
83655 D23 DCA3AD96 1C62F356 208552 BB 9ED52907 7096966D
670 C354E 4ABC9804 F1746C08 CA18217C 32905 E46 2E36CE3B
E39E772C 180 E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
DE2BCBF6 95581718 3995497C EA956AE5 15 D22618 98 FA0510
15728 E5A 8AAAC42D AD33170D 04507 A33 A85521AB DF1CBA64
ECFB8504 58 DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
F12FFA06 D98A0864 D8760273 3EC86A64 521 F2B18 177 B200C
BBE11757 7A615D6C 770988 C0 BAD946E2 08 E24FA0 74 E5AB31
43 DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
88719 A10 BDBA5B26 99 C32718 6AF4E23C 1A946834 B6150BDA
2583 E9CA 2AD44CE8 DBBBC2DB 04 DE8EF9 2E8EFC14 1FBECAA6
287 C5947 4E6BC05D 99 B2964F A090C3A2 233 BA186 515 BE7ED
1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
93 B4EA98 8D8FDDC1 86 FFB7DC 90 A6C08F 4DF435C9 34028492
36 C3FAB4 D27C7026 C1D4DCB2 602646 DE C9751E76 3DBA37BD
F8FF9406 AD9E530E E5DB382F 413001 AE B06A53ED 9027 D831
179727 B0 865 A8918 DA3EDBEB CF9B14ED 44 CE6CBA CED4BB1B
DB7F1447 E6CC254B 33205151 2BD7AF42 6FB8F401 378 CD2BF
5983 CA01 C64B92EC F032EA15 D1721D03 F482D7CE 6E74FEF6
D55E702F 46980 C82 B5A84031 900 B1C9E 59 E7C97F BEC7E8F3
23 A97A7E 36 CC88BE 0F1D45B7 FF585AC5 4BD407B2 2B4154AA
CC8F6D7E BF48E1D8 14 CC5ED2 0F8037E0 A79715EE F29BE328
06 A1D58B B7C5DA76 F550AA3D 8A1FBFF0 EB19CCB1 A313D55C
DA56C9EC 2EF29632 387 FE8D7 6E3C0468 043 E8F66 3F4860EE
12 BF2D5B 0B7474D6 E694F91E 6DBE1159 74 A3926F 12 FEE5E4

26

5 SECURITY CONSIDERATIONS

38777 CB6 A932DF8C D8BEC4D0 73 B931BA 3BC832B6 8D9DD300
741 FA7BF 8AFC47ED 2576 F693 6BA42466 3AAB639C 5AE4F568
3423 B474 2BF1C978 238 F16CB E39D652D E3FDB8BE FC848AD9
22222 E04 A4037C07 13 EB57A8 1A23F0C7 3473 FC64 6CEA306B
4BCBC886 2F8385DD FA9D4B7F A2C087E8 79683303 ED5BDD3A
062 B3CF5 B3A278A6 6D2A13F8 3F44F82D DF310EE0 74 AB6A36
4597 E899 A0255DC1 64 F31CC5 0846851D F9AB4819 5DED7EA1
B1D510BD 7EE74D73 FAF36BC3 1ECFA268 359046 F4 EB879F92
4009438B 481 C6CD7 889 A002E D5EE382B C9190DA6 FC026E47
9558 E447 5677 E9AA 9E3050E2 765694 DF C81F56E8 80 B96E71
60 C980DD 98 EDD3DF FFFFFFFF FFFFFFFF

The decimal value of the generator, g, is 2.

5 Security Considerations
This entire document is about security.
This version of the protocol deliberately incorporates only aminimal amount of cryptographic
choice. Examples of possible choices that can readily added in future drafts include:

• Support for the Digital Signature Standard

• Support for Elliptic Curve Cryptography

• Additional symmetric algorithms

• Additional hash algorithms

Furthermore, additional credential formats, such as OpenPGP, may be addressed in future
drafts.
This version of the protocol includes a mechanism that derives a cryptographic key from a
passphrase shared by a community of users. It is impossible to overstate the security issues
that such a mechanism raises.
This version of the protocol does not include a specific rekeying capability. Data volumes
in IM environments are expected to be small, and the protocol prefers to simply instantiate
new conversation keys. It is straightforward to extend the security session protocol to enable
negotiation of a new key.

27

6 EXAMPLES

6 Examples
6.1 Security Session

<iq from=’initiator@some.tld’
to=’responder@other.tld’
type=’get’
id=’whatever ’ >
<x xmlns=’jabber:security:session >

␣␣␣␣␣␣␣<session1␣version=’1.0’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣initiator=’initiator@some.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣responder=’responder@other.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sessionId=’session11223344556677@some.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣hmac=’hmac -sha1’>
␣␣␣␣␣␣␣␣␣<nonce␣encoding=’hex’>
␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣ </nonce >
␣␣␣␣␣␣␣␣␣<keyAgreement >
␣␣␣␣␣␣␣␣␣␣␣␣<dh␣group=’modp4096 ’>
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<publicKey␣encoding=’base64 ’>
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣</publicKey >
␣␣␣␣␣␣␣␣␣␣␣␣ </dh >
␣␣␣␣␣␣␣␣␣ </keyAgreement >
␣␣␣␣␣␣␣␣␣<algorithms >
␣␣␣␣␣␣␣␣␣␣␣␣<algorithm >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<confAlg␣cipher=’3des -cbc’/>
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<hmacAlg␣alg=’hmac -sha1’/>
␣␣␣␣␣␣␣␣␣␣␣␣ </algorithm >
␣␣␣␣␣␣␣␣␣ </algorithms >
␣␣␣␣␣␣␣␣␣<authnMethods >
␣␣␣␣␣␣␣␣␣␣␣␣<authnMethod >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<digSig␣alg=’rsa’>
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<certificate␣type=’x509’␣encoding=’base64 ’>
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ </certificate >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣</digSig >
␣␣␣␣␣␣␣␣␣␣␣␣ </authnMethod >
␣␣␣␣␣␣␣␣␣ </authnMethods >
␣␣␣␣␣␣ </session1 >
␣␣␣ </x>
</iq >

<iq␣from=’responder@other.tld’
␣␣␣␣to=’initiator@some.tld’
␣␣␣␣type=’result ’
␣␣␣␣id=’whatever ’␣>
␣␣␣␣<x␣xmlns=’jabber:security:session >

<session2 version=’1.0’

28

6 EXAMPLES

initiator=’initiator@some.tld’
responder=’responder@other.tld’
sessionId=’session11223344556677@some.tld’
hmac=’hmac -sha1’>

<nonce encoding=’hex’>
...

</nonce >
<keyAgreement >

<dh group=’modp4096 ’>
<publicKey encoding=’base64 ’>

...
</publicKey >

</dh>
</keyAgreement >
<algorithm >

<confAlg cipher=’3des -cbc’/>
<hmacAlg alg=’hmac -sha1’/>

</algorithm >
<authnMethod >

<digSig alg=’rsa’>
<certificate type=’x509’ encoding=’base64 ’>

...
</certificate >

</digSig >
</authnMethod >
<authenticator encoding=’base64 ’>

...
</authenticator >

</session2 >
</x>

</iq>

<iq from=’initiator@some.tld’
to=’responder@other.tld’
type=’result ’
id=’whatever ’ >
<x xmlns=’jabber:security:session >

␣␣␣␣␣␣␣<session3␣version=’1.0’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣initiator=’initiator@some.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣responder=’responder@other.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sessionId=’session11223344556677@some.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣hmac=’hmac -sha1’>
␣␣␣␣␣␣␣␣␣<authenticator␣encoding=’base64 ’>
␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣ </authenticator >
␣␣␣␣␣␣ </session3 >
␣␣␣ </x>
</iq >

29

6 EXAMPLES

6.2 Key Transport

<iq type=’set’ >
<x xmlns=’jabber:security:key >

␣␣␣␣␣␣<keyTransport␣version=’1.0’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣initiator=’initiator@some.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣responder=’responder@other.tld’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣sessionId=’session11223344556677@some.tld’>
␣␣␣␣␣␣␣␣␣<convId >
␣␣␣␣␣␣␣␣␣␣␣␣44 d2d2d2d2@some.tld
␣␣␣␣␣␣␣␣␣ </convId >
␣␣␣␣␣␣␣␣␣<EncryptedKey␣xmlns=’http://www.w3.org /2001/04/ xmlenc#’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣Type=’http://www.w3.org /2001/04/ xmlenc#Content

’>
␣␣␣␣␣␣␣␣␣␣␣␣<EncryptionMethod␣Algorithm=’http://www.w3.org /2001/04/

xmlenc#kw-tripledes >
</EncryptionMethod >
<CipherData >

<CipherValue >
...

</CipherValue >
</CipherData >

</EncryptedKey >
<EncryptedKey xmlns=’http: //www.w3.org /2001/04/ xmlenc#’

Type=’http: //www.w3.org /2001/04/ xmlenc#Content
’>

<EncryptionMethod Algorithm=’http: //www.w3.org /2001/04/
xmlenc#kw -tripledes >

␣␣␣␣␣␣␣␣␣␣␣␣ </EncryptionMethod >
␣␣␣␣␣␣␣␣␣␣␣␣<CipherData >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<CipherValue >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣</CipherValue >
␣␣␣␣␣␣␣␣␣␣␣␣ </CipherData >
␣␣␣␣␣␣␣␣␣ </EncryptedKey >
␣␣␣␣␣␣␣␣␣<hmac␣encoding=’hex’>
␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣ </hmac >
␣␣␣␣␣␣ </keyTransport >
␣␣␣ </x>
</iq >

6.3 Message Protection

<message from=’initiator@some.tld’
to=’responder@other.tld’>

<body>
The real body is protected.

30

7 REFERENCES

</body>
<x xmlns=’jabber:security:message ’>

<protectedMessage version=’1.0’
from=’initiator@some.tld’
to=’responder@other.tld’
convId=’44 d2d2d2d2@some.tld’
seqNum=’1’>

<securityLabel >
Confidential

</securityLabel >
<EncryptedData xmlns=’http: //www.w3.org /2001/04/ xmlenc#’

Type=’http: //www.w3.org /2001/04/ xmlenc#Element
’>

<EncryptionMethod Algorithm=’http: //www.w3.org /2001/04/
xmlenc#tripledes -cbc >

␣␣␣␣␣␣␣␣␣␣␣␣ </EncryptionMethod >
␣␣␣␣␣␣␣␣␣␣␣␣<CipherData >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣<CipherValue >
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣</CipherValue >
␣␣␣␣␣␣␣␣␣␣␣␣ </CipherData >
␣␣␣␣␣␣␣␣␣ </EncryptedData >
␣␣␣␣␣␣␣␣␣<hmac␣encoding=’hex’>
␣␣␣␣␣␣␣␣␣␣␣␣...
␣␣␣␣␣␣␣␣␣ </hmac >
␣␣␣␣␣␣ </protectedMessage >
␣␣␣ </x>
</message >

7 References
”XML Encryption Syntax and Processing”; http://www.w3.org/TR/xmlenc-core
more to be added

31

	Introduction
	Requirements And Considerations
	Security Requirements
	Data Protection Requirements
	Data Classification Requirements
	The End To End Requirement
	Trust Issues
	Cryptosystem Design Considerations

	Environmental Considerations
	Usability Requirements
	Development And Deployment Requirements

	Protocol Specification
	Protocol Overview
	Definitions And Notation
	XML Processing
	Transporting Binary Content
	Transporting Encrypted Content
	HMAC Computation
	Performing Cryptographic Operations

	XML Namespaces
	Security Sessions
	Overview
	Security Session Negotiation
	DTDs
	Generating And Sending the session1 PDU
	Receiving And Processing the session1 PDU
	Generating And Sending the session2 PDU
	Receiving And Processing the session2 PDU
	Generating And Sending the session3 PDU
	Receiving And Processing the session3 PDU
	Session Key Material Derivation

	Key Transport
	Overview
	The Key Transport Mechanism
	DTDs
	Generating And Sending the keyTransport PDU
	Receiving and Processing the keyTransport PDU

	Message Protection
	Overview
	The Message Protection Mechanism
	DTD
	Generating And Sending the protectedMessage PDU
	Receiving and Processing the protectedMessage PDU

	Requesting Keys
	Conformance Profile

	Diffie-Hellman Groups
	1024 bit Group, modp1024
	2048 bit Group, modp2048
	4096 bit Group, modp4096
	8192 bit Group, modp8192

	Security Considerations
	Examples
	Security Session
	Key Transport
	Message Protection

	References

