
XEP-0248: PubSub Collection Nodes

Peter Saint-Andre
mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org

https://stpeter.im/

Ralph Meijer
mailto:ralphm@ik.nu
xmpp:ralphm@ik.nu

Brian Cully
mailto:bjc@kublai.com
xmpp:bjc@kublai.com

2025-09-11
Version 0.5.0

Status Type Short Name
Deferred Standards Track NOT_YET_ASSIGNED

This specification defines the nature and handling of collection nodes in the XMPP publish-subscribe
extension.

mailto:stpeter@stpeter.im
xmpp:stpeter@jabber.org
https://stpeter.im/
mailto:ralphm@ik.nu
xmpp:ralphm@ik.nu
mailto:bjc@kublai.com
xmpp:bjc@kublai.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2024 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Scope 1

3 Glossary 1

4 Preliminaries 2
4.1 Collection Nodes . 2

5 Entity Use Cases 2
5.1 Discovering Support for Collection Nodes . 2
5.2 Discover Nodes . 3
5.3 Notifications . 4

5.3.1 Generating Notifications for Collections 4
5.3.2 Node Association and Dissociation . 5

6 Subscriber Use Cases 7
6.1 Subscribe to a Collection Node . 7

6.1.1 Request . 8
6.1.2 Success Case . 9
6.1.3 Error Cases . 9

6.2 Retrieving Items on Collection Nodes . 10
6.2.1 Request . 10
6.2.2 Success Case . 10
6.2.3 Error Cases . 11

7 Owner Use Cases 11
7.1 Create a New Collection Node . 11

7.1.1 Request . 12
7.1.2 Success Case . 12
7.1.3 Error Cases . 12

7.2 Configuring a Collection Node . 13
7.2.1 Request . 13
7.2.2 Success Case . 15
7.2.3 Error Cases . 15
7.2.4 Changing Node Type to Collection . 17

7.3 Request Default Node Configuration Options 17
7.3.1 Request . 17
7.3.2 Success Case . 18
7.3.3 Error Cases . 20

7.4 Deleting a Collection Node . 20
7.4.1 Request . 20
7.4.2 Success Case . 20

7.4.3 Error Cases . 20
7.5 Associating a Node to a Collection . 21

7.5.1 Request . 21
7.5.2 Success Case . 21
7.5.3 Error Cases . 22

7.6 Dissociating a Node from a Collection . 23
7.6.1 Request . 23
7.6.2 Success Case . 23
7.6.3 Error Cases . 23

8 Implementation Notes 24
8.1 Root Node . 24
8.2 Handling Collection Node Deletion . 24
8.3 Updating Node Configuration When Associating or Dissociating Nodes 25

9 Feature Summary 25

10 Security Considerations 26
10.1 Access Models . 26

11 IANA Considerations 26

12 XMPP Registrar Considerations 26
12.1 Service Discovery Features . 26
12.2 Field Standardization . 26

12.2.1 pubsub#subscribe_options FORM_TYPE 26
12.2.2 pubsub#node_config FORM_TYPE . 27

12.3 SHIM Headers . 28
12.4 Service Discovery Category/Type . 28

13 XML Schema 29

14 Acknowledgements 29

3 GLOSSARY

1 Introduction
Publish-Subscribe (XEP-0060) 1 defines an XMPP protocol extension for generic publish-
subscribe features. However, it only allows notifications from nodes to which an entity is
directly subscribed. It is useful in some circumstances to describe a relationship between
nodes so that a publish on one node may be delivered via another node. For instance, if an
entity is interested in notifications from a set of nodes the entity would discover each node
somehow and then subscribe to them. With collection nodes, the entity would subscribe only
to the collection which links the desired nodes, simplifying the subscription process.
In addition to simplifying the subscriber’s usage, collection nodes also allow the owner to
describe almost any type of relationship between nodes. Using various access models on
different nodes the owner can also create almost any desired authorization semantics on a set
of leaf nodes.
Note: Any use cases not described herein are described in Publish-Subscribe (XEP-0060) 2.
Also, this document does not show error flows related to the generic publish-subscribe use
cases referenced herein, since they are exhaustively defined in XEP-0060. The reader is
referred to XEP-0060 for all relevant protocol details related to the XMPP publish-subscribe
extension.

2 Scope
This documents addresses the common requirements regarding configuration, publishing,
subscribing, and notification semantics of collection nodes.

3 Glossary
The following terms are used in this document to refer to collection node-specific features.
Note: some of these terms are specified in greater detail within the body of this document.

Collection Node A type of node that contains other nodes but no published items (c.f. Leaf
Node).

Leaf Node A type of node that contains published items but no other nodes (c.f. Collection
Node).

Node Graph The network of nodes emitting from a given node which contains all its descen-
dants.

Root Node An anonymous collection node used as the de facto beginning of a service’s node
graph.

1XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.
2XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

1

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

5 ENTITY USE CASES

Subscription Depth Howdeep the collection node graphwill be traversedwhen determining
whether notifications will be sent. May be any integer, 0 or greater, or ”all”.

Subscription Type The type of notification, either ”nodes”, ”items”, or ”all” which the sub-
scriber is interested in.

4 Preliminaries
4.1 Collection Nodes
Collection nodes link nodes together to unify notifications from a set of collection or leaf
nodes. An entity can subscribe to the collection and receive notifications of any associated
leaf nodes.
A collection node can link with any other node in order to create a directed acyclic graph
(DAG). Collection nodes MUST NOT be linked in such a way as to produce a cyclic graph (i.e.,
they cannot link to nodes that eventually link back to the initial node).
Collection nodes only contain other nodes and MUST NOT contain published items (therefore
a collection MUST NOT support the ”publish” feature or related features such as ”persistent-
items”).

5 Entity Use Cases
5.1 Discovering Support for Collection Nodes
An entity might wish to discover if a service implements collection nodes; in order to do
so, it sends a service discovery information (”disco#info”) query to the component’s JID
using Service Discovery (XEP-0030) 3. If a service supports collection nodes it MUST return
a ”pubsub#collections” feature. In addition, if the service supports associating a node with
more than one collection it MUST return a feature of ”pubsub#multi-collections”.

Listing 1: Entity requests features from a service
<iq type=’get’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 2: Service responds with support for collections
<iq type=’result ’

from=’pubsub.shakespeare.lit’

3XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

5 ENTITY USE CASES

to=’francisco@denmark.lit/barracks ’
id=’info1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
...
<feature var=’http: // jabber.org/protocol/pubsub#collections ’/>
<feature var=’http: // jabber.org/protocol/pubsub#multi -collections ’

/>
...

</query >
</iq>

5.2 Discover Nodes
If a service implements a hierarchy of nodes, it MUST also enable entities to discover the
nodes in that hierarchy by means of the Service Discovery protocol, subject to the recom-
mendations in Service Discovery (XEP-0030) 4 regarding large result sets (for which Jabber
Search (XEP-0055) 5 or some other protocol SHOULD be used). The service discovery items
(”disco#items”) protocol enables an entity to query a service for a list of associated items,
which, in the case of collection nodes would consist of the children associated with a given
node. The following examples show the use of service discovery in discovering the nodes
available at a hierarchical pubsub service.
In the first example, an entity sends a service discovery items (”disco#items”) request to the
root node (i.e., the service itself):

Listing 3: Entity asks service for all first-level nodes
<iq type=’get’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’nodes1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’/>
</iq>

Listing 4: Service returns all first-level nodes
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’nodes1 ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’>
<item jid=’pubsub.shakespeare.lit’

node=’blogs ’
name=’Weblog␣updates ’/>

<item jid=’pubsub.shakespeare.lit’

4XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
5XEP-0055: Jabber Search <https://xmpp.org/extensions/xep-0055.html>.

3

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0055.html
https://xmpp.org/extensions/xep-0055.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0055.html

5 ENTITY USE CASES

node=’news’
name=’News␣and␣announcements ’/>

</query >
</iq>

In the second example, an entity sends a disco#items request to one of the first-level nodes,
which is also a collection node:

Listing 5: Entity requests second-level nodes
<iq type=’get’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’nodes2 ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’
node=’blogs ’/>

</iq>

Listing 6: Service returns second-level nodes
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’nodes2 ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’
node=’blogs ’>

<item jid=’pubsub.shakespeare.lit’
node=’princely_musings ’/>

<item jid=’pubsub.shakespeare.lit’
node=’kingly_ravings ’/>

<item jid=’pubsub.shakespeare.lit’
node=’starcrossed_stories ’/>

<item jid=’pubsub.shakespeare.lit’
node=’moorish_meanderings ’/>

</query >
</iq>

5.3 Notifications
5.3.1 Generating Notifications for Collections

If a notification on a child node is created and then delivered via the collection then the
notifications generated by the service MUST contain additional information. The ’node’
attribute of the <item/> or <node/> element contained in the notification message MUST
specify the node identifier of the node that generated the notification (not the collection) and
the <message/> stanza MUST contain Stanza Headers and Internet Metadata (XEP-0131) 6 that

6XEP-0131: Stanza Headers and Internet Metadata <https://xmpp.org/extensions/xep-0131.html>.

4

https://xmpp.org/extensions/xep-0131.html
https://xmpp.org/extensions/xep-0131.html

5 ENTITY USE CASES

specifies the node identifier of the collection.
Note: The delivery options (such as ”pubsub#deliver_payloads”) are determined by the
publishing leaf node, not by the collection node. If the owner of a collection node sets delivery
options for a collection node, the service SHOULD ignore those options and apply the options
set for the leaf node that publishes an item.
Item notifications are notifications about the contents of a leaf node, and are generated by a
publish, retract, or purge request.

Listing 7: Subscriber receives a publish notification from a collection
<message to=’francisco@denmark.lit’ from=’pubsub.shakespeare.lit’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<items node=’princely_musings ’>

<item id=’ae890ac52d0df67ed7cfdf51b644e901 ’>
...

</item>
</items >

</event >
<headers xmlns=’http: // jabber.org/protocol/shim’>

<header name=’Collection ’>blogs </header >
</headers >

</message >

Node notifications are notifications about nodes themselves, and are generated by a create,
delete, or configure request.

Listing 8: Subscriber receives a creation notification from a collection
<message to=’francisco@denmark.lit’ from=’pubsub.shakespeare.lit’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<create node=’princely_musings ’/>

</event >
<headers xmlns=’http: // jabber.org/protocol/shim’>

<header name=’Collection ’>blogs </header >
</headers >

</message >

5.3.2 Node Association and Dissociation

If a collection node is configured to send notification of node associations and disassociations,
the service shall send an event that contains a <collection/> element whose ’node’ attribute
specifies the NodeID of the collection; this element in turn contains an <associate/> or
<dissociate/> element whose ’node’ attribute specifies the NodeID of node that has been
associated with the collection.

5

5 ENTITY USE CASES

Listing 9: Notification of node association
<message from=’pubsub.shakespeare.lit’

to=’francisco@denmark.lit’
id=’newnode1 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<collection node=’some -collection ’>

<associate node=’new -node -id’>
</collection >

</event >
</message >

Listing 10: Notification of node dissociation
<message from=’pubsub.shakespeare.lit’

to=’francisco@denmark.lit’
id=’newnode1 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<collection node=’some -collection ’>

<dissociate node=’old -node -id’>
</collection >

</event >
</message >

The notification event MAY also include the node metadata, formatted using the Data Forms
(XEP-0004) 7 protocol.

Listing 11: Notification of node association
<message from=’pubsub.shakespeare.lit’

to=’francisco@denmark.lit’
id=’newnode2 ’>

<event xmlns=’http: // jabber.org/protocol/pubsub#event ’>
<collection node=’some -collection ’>

<associate node=’new -node -id’>
<x xmlns=’jabber:x:data ’ type=’result ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >http:// jabber.org/protocol/pubsub#meta -data</value >

</field >
<field var=’pubsub#creation_date ’>

<value >2003 -07 -29 T22:56Z </value >
</field >
<field var=’pubsub#creator ’>

<value >hamlet@denmark.lit</value >
</field >
<field var=’pubsub#description ’>

<value >Atom feed for my blog.</value >
</field >

7XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.

6

https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html
https://xmpp.org/extensions/xep-0004.html

6 SUBSCRIBER USE CASES

<field var=’pubsub#language ’>
<value >en</value >

</field >
<field var=’pubsub#contact ’>

<value >bard@shakespeare.lit</value >
</field >
<field var=’pubsub#owner ’>

<value >hamlet@denmark.lit</value >
</field >
<field var=’pubsub#title ’>

<value >Princely Musings (Atom).</value >
</field >
<field var=’pubsub#type’

><value >http://www.w3.org /2005/ Atom</value >
</field >

</x>
</node>

</collection >
</event >

</message >

6 Subscriber Use Cases
6.1 Subscribe to a Collection Node
A service that implements collection nodes SHOULD allow entities to subscribe to collection
nodes (subject to access models and local security policies).
In addition to the subscription configuration options already defined in Publish-Subscribe
(XEP-0060) 8, there are two subscription configuration options specific to collection nodes:

• pubsub#subscription_type
This subscription option enables the subscriber to subscribe either to notifications
about items or notifications about nodes.
If the subscription type is ”items”, the subscriber shall be notified whenever any node
contained in the collection has an item published to it, retracted from it, or the node is
purged, as modified by the value of the ”pubsub#subscription_depth” option.
If the subscription type is ”nodes”, the subscriber shall be notified whenever a new
node is added to the collection, removed from the collection, or the configuration
of a node within the collection has changed, as modified by the value of the ”pub-
sub#subscription_depth” option.
If the subscription type is ”all”, the subscriber shall be notified about both ”items” and
”nodes” types of events, as modified by the value of the ”pubsub#subscription_depth”
option.

8XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

7

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

6 SUBSCRIBER USE CASES

The default value of this subscription option SHOULD be ”nodes”.

• pubsub#subscription_depth
This subscription option enables the subscriber to specify how far to traverse the node
graph when determining whether a notification will be sent. It may be any integer
value, 0 or greater, or the value ”all” which means that any node within the collection
will generate a notification.
The default value of this subscription option SHOULD be ”1”.

In order to subscribe to a collection node, an entity MUST send a subscription request to
the node; the subscription request MAY include subscription options, but this is not strictly
necessary (especially if the entity does not wish to override the default settings for the
”pubsub#subscription_type” and ”pubsub#subscription_depth” options).

6.1.1 Request

Listing 12: Entity subscribes to a collection node (no configuration)
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’collsub1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscribe jid=’francisco@denmark.lit’

node=’blogs ’/>
</pubsub >

</iq>

The subscriber will now receive notification of new first-level nodes created within the
”blogs” collection.

Listing 13: Entity subscribes to a collection node (with configuration)
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’collsub1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscribe jid=’francisco@denmark.lit’

node=’blogs ’/>
<options >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#subscribe_options </
value >

8

6 SUBSCRIBER USE CASES

</field >
<field var=’pubsub#subscription_type ’>

<value >items </value >
</field >
<field var=’pubsub#subscription_depth ’>

<value >all</value >
</field >

</x>
</options >

</pubsub >
</iq>

6.1.2 Success Case

If the service allows the subscription it MUST inform the requesting entity that it is now
subscribed.

Listing 14: Service responds with success
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’collsub1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscription node=’blogs ’

jid=’francisco@denmark.lit’
subscription=’subscribed ’/>

</pubsub >
</iq>

6.1.3 Error Cases

A service MAY allow an entity to subscribe to a collection node in two ways, once with a
subscription of type ”nodes” (to receive notification of any new nodes added to the collection
or the entire tree) and once with a subscription of type ”items” (to receive all items published
within the tree). However, a service SHOULD NOT allow an entity to subscribe twice to a
collection node (once with a subscription depth of ”1” and once with a subscription depth
of ”all”) for the same subscription type, since two such subscriptions are unnecessary (a
depth of ”all” includes by definition a depth of ”1”); in this case the service SHOULD return a
<conflict/> error to the requesting entity.

Listing 15: Service does not allow mulitple subscriptions to the same node
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’

9

6 SUBSCRIBER USE CASES

id=’collsub1 ’>
<error type=’cancel ’>

<conflict xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

Depending on the nature of the node graph, a subscription type of ”items” and depth of ”all”
may result in an extremely large number of notifications. Therefore, a service MAY disallow
such a combination of subscription options, in which case it MUST return a <not-allowed/>
error to the requesting entity.

Listing 16: Service does not allow requested options
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’collsub1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

6.2 Retrieving Items on Collection Nodes
When an entity requests items on a collection node the service SHOULD return the items on
any leaf nodes associated with it subject to the access model of the collection node.

6.2.1 Request

Listing 17: Subscriber requests all items on a collection
<iq type=’get’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’items1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’blogs ’/>

</pubsub >
</iq>

6.2.2 Success Case

When a collection contains multiple nodes with items it MUST return multiple <items/>
elements, one per node.

10

7 OWNER USE CASES

Listing 18: Service returns items on leaf nodes
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’items1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<items node=’Romeoance ’>

<item id=’368866411 b877c30064a5f62b917cffe ’>
...

</item>
</items >
<items node=’Julliennui ’>

<item id=’3300659945416 e274474e469a1f0154c ’>
...

</item>
</items >

</pubsub >
</iq>

6.2.3 Error Cases

Depending on the nature of the node graph it may be expensive to allow item retrieval from
a collection node. Therefore the service MAY disallow item retrieval via collection nodes, in
which case it MUST return a <feature-not-implemented/> error to the requesting entity.

Listing 19: Service cannot fulfil request
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’items1 ’>

<error type=’cancel ’>
<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
</error >

</iq>

7 Owner Use Cases
7.1 Create a New Collection Node
As specified in Publish-Subscribe (XEP-0060) 9 the default value for ”pubsub#node_type”
SHOULD be ”leaf”. To create a new collection node, the requesting entity MUST include a Data
Form containing a ”pubsub#node_type” field whose <value/> element contains ”collection”.

9XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

11

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

7 OWNER USE CASES

7.1.1 Request

Listing 20: Entity requests a new collection node
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’create3 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<create node=’announcements ’/>
<configure >

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#node_config </value >
</field >
<field var=’pubsub#node_type ’><value >collection </value ></field

>
</x>

</configure >
</pubsub >

</iq>

7.1.2 Success Case

Listing 21: Service responds with success
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’create3 ’/>

7.1.3 Error Cases

In addition to the errors already defined for leaf node creation, there are several reasons why
the collection node creation request might fail:

1. The service does not support collection nodes.

2. The service does not support creation of collection nodes.

3. The requesting entity does not have sufficient privileges to create collection nodes.

These error cases are described more fully in the following sections.
If the service does not support collection nodes, it MUST respond with a <feature-not-
implemented/> error, specifying a pubsub-specific error condition of <unsupported/> and a
feature of ”collections”.

12

7 OWNER USE CASES

Listing 22: Service does not support collection nodes
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’create3 ’>

<error type=’cancel ’>
<feature -not -implemented xmlns=’urn:ietf:params:xml:ns:xmpp -

stanzas ’/>
<unsupported xmlns=’http: // jabber.org/protocol/pubsub#errors ’

feature=’collections ’/>
</error >

</iq>

If the service supports collection nodes but does not allow new collection nodes to be created,
it MUST respond with a <not-allowed/> error.

Listing 23: Service does not allow creation of collection nodes
<iq type=’error ’

from=’hamlet@denmark.lit/elsinore ’
to=’pubsub.shakespeare.lit’
id=’create3 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the requesting entity has insufficient privileges to create new collections, the service MUST
respond with a <forbidden/> error.

Listing 24: Requesting entity has insufficient privileges to create collection nodes
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’create3 ’>

<error type=’auth’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

7.2 Configuring a Collection Node
7.2.1 Request

In addition to the node configuration options specified in Publish-Subscribe (XEP-0060) 10,
there are three additional node configuration options that a service which supports collection
10XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

13

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

7 OWNER USE CASES

nodes MUST supply.

• pubsub#node_typeWhether this is a ”leaf” or ”collection” node.

• pubsub#collection The parents of this node.

• pubsub#children The children of this node.

To associate the root node to the collection the <value/> element MUST be empty.
A service MUST support the ”pubsub#notify_config” option (specified in Publish-Subscribe
(XEP-0060) 11) for collection nodes.
A service MAY offer some node configuration options that are specific to collection nodes
and SHOULD NOT be provided in configuration forms related to leaf nodes. The following are
RECOMMENDED:

• pubsub#children_association_policy The policy regarding who may associate child
nodes with the collection (values: all, owner, whitelist).

• pubsub#children_association_whitelist The whitelist of entities that may associate
child nodes with the collection.

• pubsub#children_max The maximum number of child nodes that may be associated
with a collection.

Listing 25: Entity configures a collection node
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’config1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<configure node=’blogs ’>

<x xmlns=’jabber:x:data ’ type=’submit ’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#node_config </value >
</field >
<field var=’pubsub#node_type ’>

<value >collection </value >
</field >

11XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

14

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

7 OWNER USE CASES

<field var=’pubsub#children ’>
<value >Romeoance </value >
<value >Julliennui </value >

</field >
<field var=’pubsub#collection ’>

<value/>
</field >

</x>
</configure >

</pubsub >
</iq>

7.2.2 Success Case

Listing 26: Service successfully updates configuration
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’/>

7.2.3 Error Cases

Leaf nodes only contain published items and MUST NOT have any children. If an entity
attempts to add children to a leaf node (either via ”pubsub#children” on the leaf node or
”pubsub#collection” on another node) the service MUST return a <not-allowed/> error with
a pubsub-specific error condition of <invalid-options/>.

Listing 27: Attempt to add a leaf node as the parent of another node
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<invalid -options xmlns=’http: // jabber.org/protocol/pubsub#errors ’/

>
</error >

</iq>

If the requesting entity is not authorized to add the node to a collection then the service
MUST return a <forbidden/> error.

Listing 28: Entity is not authorized to add node to a collection

15

7 OWNER USE CASES

<iq type=’error ’
from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’>

<error type=’cancel ’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the configuration would exceed the maximum number of children allowed on a node,
either because the node’s ”pubsub#children” exceeds its own ”pubsub#children_max” value
or because adding this node to a parent via ”pubsub#collection” would exceed the parent’s
”pubsub#children_max” value, the service MUST return a <not-allowed/> error with a
pubsub-specific error condition of <max-nodes-exceeded/>.

Listing 29: Node would contain too many children
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<max -nodes -exceeded xmlns=’http: // jabber.org/protocol/pubsub#

errors ’/>
</error >

</iq>

The service MUST NOT allow the node type to be changed from collection to leaf. If it is
attempted the service MUST return a <not-allowed/> error, specifying a pubsub-specific error
condition of <invalid-options/>

Listing 30: Attempt to change node type
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<invalid -options xmlns=’http: // jabber.org/protocol/pubsub#errors ’/

>
</error >

</iq>

Note: Changing the node type leaf to collection is permissible under conditions specified in
Changing Node Type to Collection.
The service MUST NOT allow a cycle to be created in the node graph (e.g., node A to B to C

16

7 OWNER USE CASES

to A). If an entity attempts to submit a configuration that would create a cycle the service
MUST return a <not-allowed/> error, specifying a pubsub-specific error condition of <invalid-
options/>.

Listing 31: Cycle created in node graph
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’config1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<invalid -options xmlns=’http: // jabber.org/protocol/pubsub#errors ’/

>
</error >

</iq>

7.2.4 Changing Node Type to Collection

A node type can be changed from leaf to collection (but not vice versa). If the node type is
changed from leaf to collection and there are items associated with the node, the service
MUST purge the node of all items (with or without notifying the subscribers).

7.3 Request Default Node Configuration Options
As specified in Publish-Subscribe (XEP-0060) 12 a service can support retrieval of default node
configuration, allowing an entity to request information about the default node configuration.

7.3.1 Request

To get the node options for a collection node, the entity MUST send an empty <default/> ele-
ment to the service with no NodeID. The entity SHOULD include the optional ’type’ attribute
with value ’collection’. In response, the service SHOULD return the default node options.

Listing 32: Entity requests default collection node configuration options
<iq type=’get’

from=’hamlet@denmark.lit/elsinore ’
to=’pubsub.shakespeare.lit’
id=’def1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<default type=’collection ’/>

12XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

17

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

7 OWNER USE CASES

</pubsub >
</iq>

7.3.2 Success Case

If no error occurs, the service MUST return the default node configuration options.

Listing 33: Service responds with default node configuration options
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’hamlet@denmark.lit/elsinore ’
id=’def1’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<default >

<x xmlns=’jabber:x:data ’ type=’form’>
<field var=’FORM_TYPE ’ type=’hidden ’>

<value >http:// jabber.org/protocol/pubsub#node_config </value >
</field >
<field var=’pubsub#title ’ type=’text -single ’

label=’A␣friendly␣name␣for␣the␣node’/>
<field var=’pubsub#description ’ type=’text -single ’

label=’A␣description␣of␣the␣node’/>
<field var=’pubsub#node_type ’

type=’list -single ’
label=’Whether␣the␣node␣is␣a␣leaf␣(default)␣or␣a␣

collection ’>
<option label=’The␣node␣is␣a␣leaf␣node␣(default)’>

<value >leaf</value >
</option >
<option label=’The␣node␣is␣a␣collection␣node’>

<value >collection </value >
</option >
<value >collection </value >

</field >
<field var=’pubsub#collection ’

type=’text -multi ’
label=’The␣collections␣of␣which␣this␣node␣is␣a␣child ’/>

<field var=’pubsub#children ’
type=’text -multi ’
label=’The␣nodes␣of␣which␣this␣node␣is␣a␣parent ’/>

<field var=’pubsub#children_association_policy ’
type=’list -single ’>

<option label=’Only␣the␣owners␣of␣this␣node␣may␣associate␣
other␣nodes␣to␣this␣collection ’>

owners
</option >

18

7 OWNER USE CASES

<option label=’Only␣those␣on␣the␣children␣association␣
whitelist␣may␣associate␣other␣nodes␣to␣this␣collection ’>

whitelist
</option >
<option label=’Anyone␣may␣associate␣nodes␣with␣this␣

collection ’>
all

</option >
<value >owner </value >

</field >
<field var=’pubsub#children_association_whitelist ’

type=’jid -multi ’
label=’JIDs␣who␣can␣associate␣nodes␣to␣this␣collection ’

/>
<field var=’pubsub#children_max ’

type=’text -single ’
label=’The␣maximum␣number␣of␣children␣for␣this␣

collection ’/>
<field var=’pubsub#deliver_notifications ’ type=’boolean ’

label=’Deliver␣event␣notifications ’>
<value >true</value >

</field >
<field var=’pubsub#notify_config ’ type=’boolean ’

label=’Notify␣subscribers␣when␣the␣node␣configuration␣
changes ’>

<value >0</value >
</field >
<field var=’pubsub#notify_delete ’ type=’boolean ’

label=’Notify␣subscribers␣when␣the␣node␣is␣deleted ’>
<value >0</value >

</field >
<field var=’pubsub#notify_sub ’ type=’boolean ’

label=’Notify␣owners␣about␣new␣subscribers␣and␣
unsubscribes ’>

<value >0</value >
</field >
<field var=’pubsub#subscribe ’ type=’boolean ’

label=’Whether␣to␣allow␣subscriptions ’>
<value >1</value >

</field >
<field var=’pubsub#access_model ’ type=’list -single ’

label=’Specify␣the␣subscriber␣model ’>
<option ><value >authorize </value ></option >
<option ><value >open</value ></option >
<option ><value >presence </value ></option >
<option ><value >roster </value ></option >
<option ><value >whitelist </value ></option >
<value >open</value >

</field >

19

7 OWNER USE CASES

</x>
</default >

</pubsub >
</iq>

7.3.3 Error Cases

There are several reasons why the default node configuration options request might fail.
These cases are defined in Publish-Subscribe (XEP-0060) 13.

7.4 Deleting a Collection Node
7.4.1 Request

If a service supports collection node creation it MUST support collection node deletion.

Listing 34: Owner attempts to delete a collection node
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’delete1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<delete node=’blogs ’/>

</pubsub >
</iq>

7.4.2 Success Case

If no error occurs, the service MUST inform the owner of success.

Listing 35: Collection node was deleted
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’delete1 ’/>

7.4.3 Error Cases

If the requesting entity attempts to delete the root node, the service MUST return a <not-
allowed/> error.

13XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

20

https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html

7 OWNER USE CASES

Listing 36: Node is the root
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’delete1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

7.5 Associating a Node to a Collection
7.5.1 Request

A service MAY allow collection nodes to have children associated with themwithout changing
the rest of the configuration. If the service allows this an entity can send and <associate/>
element with a ’node’ attribute that contains the child node within a <collection/> element
that posesses a ’node’ attribute containing the parent node to the service.

Listing 37: Entity requests node association
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’assoc1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<collection node=’some -collection ’>

<associate node=’new -child -node’/>
</collection >

</pubsub >
</iq>

7.5.2 Success Case

If the service allows the node association then it MUST confirm the association with an empty
result.

Listing 38: Service associates the node
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit’
id=’assoc1 ’/>

21

7 OWNER USE CASES

7.5.3 Error Cases

Listing 39: Entity is not authorized to associate the node
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’assoc1 ’>

<error type=’cancel ’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

If the configuration would exceed the maximum number of children allowed on a node,
either because the node’s ”pubsub#children” exceeds its own ”pubsub#children_max” value
or because adding this node to a parent via ”pubsub#collection” would exceed the parent’s
”pubsub#children_max” value, the service MUST return a <not-allowed/> error with a
pubsub-specific error condition of <max-nodes-exceeded/>.

Listing 40: Node would contain too many children
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’assoc1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<max -nodes -exceeded xmlns=’http: // jabber.org/protocol/pubsub#

errors ’/>
</error >

</iq>

The service MUST NOT allow a cycle to be created in the node graph (e.g., node A to B to C
to A). If an entity attempts to submit a configuration that would create a cycle the service
MUST return a <not-allowed/> error, specifying a pubsub-specific error condition of <invalid-
options/>.

Listing 41: Cycle created in node graph
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’assoc1 ’>

<error type=’cancel ’>
<not -allowed xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
<invalid -options xmlns=’http: // jabber.org/protocol/pubsub#errors ’/

>
</error >

</iq>

22

7 OWNER USE CASES

7.6 Dissociating a Node from a Collection
7.6.1 Request

A service MAY allow collection nodes to have children dissociated from them without chang-
ing the rest of the configuration. If the service allows this an entity can send and <dissociate/>
element with a ’node’ attribute that contains the child node within a <collection/> element
that posesses a ’node’ attribute containing the parent node to the service.

Listing 42: Entity requests node dissociation
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’dissoc1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub#owner ’>
<collection node=’some -collection ’>

<dissociate node=’old -child -node’/>
</collection >

</pubsub >
</iq>

7.6.2 Success Case

If the service allows the node dissociation then it MUST confirm the association with an
empty result.

Listing 43: Service dissociates the node
<iq type=’result ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit’
id=’dissoc1 ’/>

7.6.3 Error Cases

If a dissociation is requested between two nodes that are not already associated then the
service MUST return a <bad-request/> error.

Listing 44: Node is not associated
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit’
id=’dissoc1 ’>

<error type=’modify ’>

23

8 IMPLEMENTATION NOTES

<bad -request xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
</error >

</iq>

Listing 45: Entity is not authorized to dissociate the node
<iq type=’error ’

from=’pubsub.shakespeare.lit’
to=’francisco@denmark.lit/barracks ’
id=’dissoc1 ’>

<error type=’cancel ’>
<forbidden xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>

</error >
</iq>

8 Implementation Notes
8.1 Root Node
To provide a starting point for service discovery a service SHOULD support a root node. A root
node represents the node belonging to a given service and MUST be identified by the lack of a
node identifier (i.e., the address of the pubsub service itself, such as ”pubsub.shakespeare.lit”).
Because the root node is owned by the service itself an entity SHOULD NOT be allowed create,
delete, or configure the root node.
If a node is created or configured without any parents specified, a service MAY automatically
associate otherwise orphaned nodes directly to the root node. If a service automatically
associates a node with the root it MUST reflect that in the node configuration data form.

Listing 46: Entity subscribes to the root node
<iq type=’set’

from=’francisco@denmark.lit/barracks ’
to=’pubsub.shakespeare.lit’
id=’root1 ’>

<pubsub xmlns=’http: // jabber.org/protocol/pubsub ’>
<subscribe jid=’francisco@denmark.lit’/>

</pubsub >
</iq>

8.2 Handling Collection Node Deletion
Deletion of collection nodes can have a number of side effects due to implementation.
Depending on the nature of the collection any of the following MAY happen when a collection
node is deleted:

24

9 FEATURE SUMMARY

• When the collection node is deleted and the child nodes have no other parents the child
nodes are orphaned; meaning that they will have no parent node, but continue to exist.

• When the collection node is deleted and the child nodes have no other parents the child
nodes are re-assigned as children of the root node.

• When the collection node is deleted and the child nodes have no other parents the child
nodes are also deleted.

• When the collection node is deleted and the child nodes have at least one other node the
child nodes MUST remain associated with remaining parent nodes.

8.3 Updating Node Configuration When Associating or Dissociating Nodes
Node configuration MUST always reflect the current state of the node graph. Because node
configuration contains both a pointer to its parents as well as its children an update to a
primary node’s ”pubsub#collection” value will change the value of the secondary node’s
”pubsub#children” value, and vice-versa. A service MAY send a notification of the configura-
tion change on the secondary node to subscribers if ”pubsub#notify_config” is enabled on the
secondary node.

9 Feature Summary
This section summarizes the features described herein, specifies the appropriate require-
ments level for each feature (REQUIRED, RECOMMENDED, or OPTIONAL), and provides
cross-references to the section of this document in which each feature is described.
Note: The feature names are all of the form ”http://jabber.org/protocol/pubsub#name”,
where ”name” is the text specified in the first column below.

Name Description Support Section
collections Collection nodes are

supported.
OPTIONAL

multi-collection A single leaf node can
be associated with
multiple collections.

OPTIONAL

25

12 XMPP REGISTRAR CONSIDERATIONS

10 Security Considerations
10.1 Access Models
Collection nodes can be used to associate almost any node within the service, but only the
access model of the collection node itself is used to determine what an entity is allowed to
see. Therefore care should be taken that nodes are not linked in such a way as to leak private
data (e.g., from a ”closed” leaf node through an ”open” collection) unless that behavior is
specifically desired.

11 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
14.

12 XMPP Registrar Considerations
Note: These options are in addition to the standard options described in Publish-Subscribe
(XEP-0060) 15 and related XEPs.

12.1 Service Discovery Features

<var>
<name>pubsub#collections </name>
<desc>Support for collection nodes </desc>
<doc>XEP -0248</doc>

</var>
<var>

<name>pubsub#multi -collections </name>
<desc>Support for multiple collections on a node</desc>
<doc>XEP -0248</doc>

</var>

12.2 Field Standardization
12.2.1 pubsub#subscribe_options FORM_TYPE

14The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

15XEP-0060: Publish-Subscribe <https://xmpp.org/extensions/xep-0060.html>.

26

http://www.iana.org/
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0060.html
http://www.iana.org/
https://xmpp.org/extensions/xep-0060.html

12 XMPP REGISTRAR CONSIDERATIONS

<form_type >
<name>http:// jabber.org/protocol/pubsub#subscribe_options </name>
<doc>XEP -0248</doc>
<desc>Options for collection node subscription </desc>
<field

var=’pubsub#subscription_depth ’
type=’text -single ’>
label=’How␣far␣to␣traverse␣the␣node␣graph␣for␣notifications ’/>

<field
var=’pubsub#subscription_type ’
type=’list -single ’>

<option label=’Receive␣notification␣of␣items␣only’>
items

</option >
<option label=’Receive␣notification␣of␣nodes␣only’>

nodes
</option >
<option label=’Receive␣notification␣of␣items␣and␣nodes ’>

all
</option >

</field >
</form_type >

12.2.2 pubsub#node_config FORM_TYPE

<form_type >
<name>http:// jabber.org/protocol/pubsub#node_config </name>
<doc>XEP -0248</doc>
<desc>Options for collection node configuration </desc>
<field

var=’pubsub#node_type ’
type=’list -single ’>

<option label=’The␣node␣contains␣items ’>
leaf

</option >
<option label=’The␣node␣contains␣other␣nodes ’>

collection
</option >

</field >
<field

var=’pubsub#collection ’
type=’text -multi ’
label=’The␣collections␣of␣which␣this␣node␣is␣a␣child ’/>

<field
var=’pubsub#children ’
type=’text -multi ’
label=’The␣nodes␣of␣which␣this␣node␣is␣a␣parent ’/>

27

12 XMPP REGISTRAR CONSIDERATIONS

<field
var=’pubsub#children_association_policy ’
type=’list -single ’>

<option label=’Only␣the␣owners␣of␣this␣node␣may␣associate␣other␣
nodes␣to␣this␣collection ’>

owners
</option >
<option label=’Only␣those␣on␣the␣children␣association␣whitelist␣

may␣associate␣other␣nodes␣to␣this␣collection ’>
whitelist

</option >
<option label=’Anyone␣may␣associate␣nodes␣with␣this␣collection ’>

all
</option >

</field >
<field

var=’pubsub#children_association_whitelist ’
type=’jid -multi ’
label=’JIDs␣who␣can␣associate␣nodes␣to␣this␣collection ’/>

<field
var=’pubsub#children_max ’
type=’text -single ’
label=’The␣maximum␣number␣of␣children␣for␣this␣collection ’/>

</form_type >

12.3 SHIM Headers
The XMPP Registrar includes ”Collection” in its registry of SHIM headers (see
<https://xmpp.org/registrar/shim.html>). The registry submission is as follows:

<header >
<name>Collection </name>
<desc>The node of subscription that sent a notification </desc>
<doc>XEP -0248</doc>

</header >

12.4 Service Discovery Category/Type
In its registry of Service Discovery identities (see <https://xmpp.org/registrar/disco-c
ategories.html>) the XMPP Registrar includes a specific types within the ”pubsub” category:

collection A pubsub node of the ”collection” type as described in XEP-0248.

28

https://xmpp.org/registrar/shim.html
https://xmpp.org/registrar/disco-categories.html
https://xmpp.org/registrar/disco-categories.html

14 ACKNOWLEDGEMENTS

The registry submission is as follows:

<category >
<name>pubsub </name>
<desc>Services and nodes that adhere to XEP -0060. </desc>
<type>

<name>collection </name>
<desc>A pubsub node of the ”collection” type.</desc>
<doc>XEP -0248 </doc>

</type>
</category >

13 XML Schema
REQUIRED.

14 Acknowledgements
Many thanks to Dave Cridland for his feedback and advice.

29

	Introduction
	Scope
	Glossary
	Preliminaries
	Collection Nodes

	Entity Use Cases
	Discovering Support for Collection Nodes
	Discover Nodes
	Notifications
	Generating Notifications for Collections
	Node Association and Dissociation

	Subscriber Use Cases
	Subscribe to a Collection Node
	Request
	Success Case
	Error Cases

	Retrieving Items on Collection Nodes
	Request
	Success Case
	Error Cases

	Owner Use Cases
	Create a New Collection Node
	Request
	Success Case
	Error Cases

	Configuring a Collection Node
	Request
	Success Case
	Error Cases
	Changing Node Type to Collection

	Request Default Node Configuration Options
	Request
	Success Case
	Error Cases

	Deleting a Collection Node
	Request
	Success Case
	Error Cases

	Associating a Node to a Collection
	Request
	Success Case
	Error Cases

	Dissociating a Node from a Collection
	Request
	Success Case
	Error Cases

	Implementation Notes
	Root Node
	Handling Collection Node Deletion
	Updating Node Configuration When Associating or Dissociating Nodes

	Feature Summary
	Security Considerations
	Access Models

	IANA Considerations
	XMPP Registrar Considerations
	Service Discovery Features
	Field Standardization
	pubsub#subscribe_options FORM_TYPE
	pubsub#node_config FORM_TYPE

	SHIM Headers
	Service Discovery Category/Type

	XML Schema
	Acknowledgements

