

- Numerical Data Visualization

- Analysis:

The chart illustrates a **steady downward of market share of Yahoo! Search**, with a sharp decline around 2019–2020, followed by a slow recovery after 2023.

Parameter	Equation
Mean	$T1 = \frac{\sum_{n=1}^N s(t)}{N}$
Standard deviation	$T2 = \sqrt{\frac{\sum_{n=1}^N (s(t) - T1)^2}{N - 1}}$
Variance	$T3 = \left(\frac{\sum_{n=1}^N \sqrt{ s(t) }}{N} \right)^2$
RMS	$T4 = \sqrt{\frac{\sum_{n=1}^N (s(t))^2}{N}}$
Absolute maximum	$T5 = \max s(t) $
Coefficient of skewness	$T6 = \frac{\sum_{n=1}^N (s(t) - T1)^3}{(N - 1)(T2)^3}$
Kurtosis	$T7 = \frac{\sum_{n=1}^N (s(t) - T1)^4}{(N - 1)(T2)^4}$

- Algorithmic Features

Enhancing LLM Analysis for Numerical Data with Algorithmic Feature Extraction

Presenter: Wenjie Xie

Supervisor: Yuchen Xia M. Sc.

Examiner: Prof. Dr. Ing. Michael Weyrich

0 Agenda

- **Motivation**
- **Basics**
- **Conceptual Design**
- **Evaluation and Analysis**
- **Summary and Outlook**

1 Motivation

- **Failure Case**
- **Challenge and Idea**

Motivation

Failure Case

- Two Forms of Data Representation

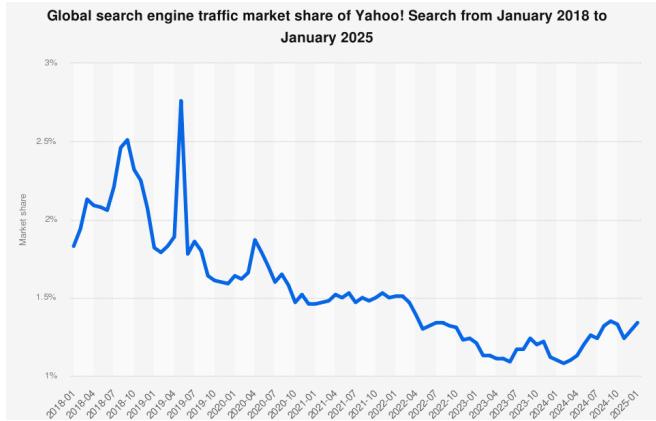


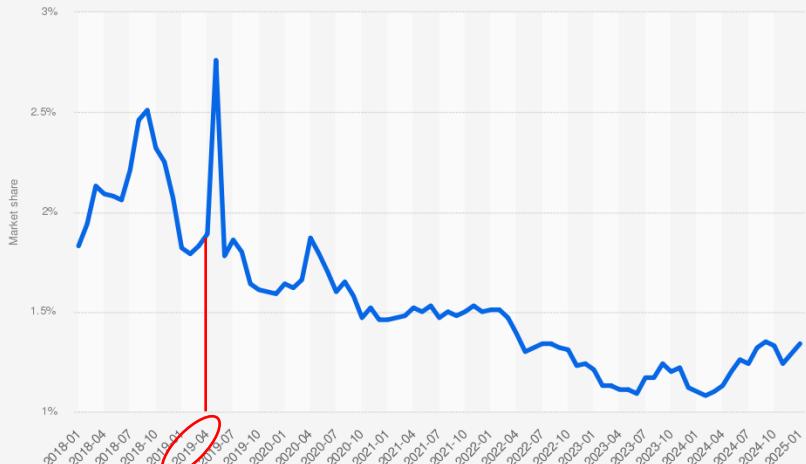
Chart Image

Jan-18	1.83	Aug-19	1.8	Mar-21	1.48
Feb-18	1.94	Sep-19	1.64	Apr-21	1.52
Mar-18	2.13	Oct-19	1.61	May-21	1.5
Apr-18	2.09	Nov-19	1.6	Jun-21	1.53
May-18	2.08	Dec-19	1.59	Jul-21	1.47
Jun-18	2.06	Jan-20	1.64	Aug-21	1.5
Jul-18	2.21	Feb-20	1.62	Sep-21	1.48
Aug-18	2.46	Mar-20	1.66	Oct-21	1.5
Sep-18	2.51	Apr-20	1.87	Nov-21	1.53
Oct-18	2.32	May-20	1.79	Dec-21	1.5
Nov-18	2.25	Jun-20	1.7	Jan-22	1.51
Dec-18	2.07	Jul-20	1.6	Feb-22	1.51
Jan-19	1.82	Aug-20	1.65	Mar-22	1.47
Feb-19	1.79	Sep-20	1.58	Apr-22	1.39
Mar-19	1.83	Oct-20	1.47	May-22	1.3
Apr-19	1.89	Nov-20	1.52	Jun-22	1.32
May-19	2.76	Dec-20	1.46	Jul-22	1.34
Jun-19	1.78	Jan-21	1.46	Aug-22	1.34
Jul-19	1.86	Feb-21	1.47	Sep-22	1.32

CSV

Data Format	Strengths	Limitations
Image	<ul style="list-style-type: none">Intuitive insightRich visual context	<ul style="list-style-type: none">No exact valuesDepends on image quality
CSV	<ul style="list-style-type: none">Precise numerical representationStatistical reliability	<ul style="list-style-type: none">Less semanticLacks visual cues

Global search engine traffic market share of Yahoo! Search from January 2018 to January 2025



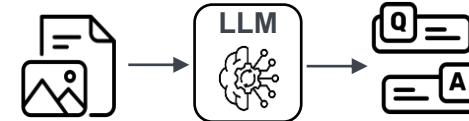
Summary of Yahoo! Search Engine Market Share (2018–2025):

- 2018–2019: Yahoo's market share fluctuated between approximately 1.9% and 2.7%, reaching its **highest point in April 2019** with several earlier increases starting in mid-2018.
- 2020–2021: The share hovered around 1.7% to 1.9% with some minor dips and recoveries, suggesting a phase of relative stability.
- 2022–2023: A noticeable decline followed, with the market share dropping to its **lowest point of about 1.1% in mid-2023**.
- 2024–early 2025: A mild rebound occurred, and by January 2025, the share had risen back to roughly 1.6%.

Overall Trend:

Although Yahoo! Search experienced occasional short-term gains, the overall trend from 2018 to 2025 shows a **gradual downward movement**, with the final market share ending lower than where it began.

Semantically insightful but imprecise



Jan-18	1.83	Aug-19	1.8	Mar-21	1.48
Feb-18	1.94	Sep-19	1.64	Apr-21	1.52
Mar-18	2.13	Oct-19	1.61	May-21	1.5
Apr-18	2.09	Nov-19	1.6	Jun-21	1.53
May-18	2.08	Dec-19	1.59	Jul-21	1.47
Jun-18	2.06	Jan-20	1.64	Aug-21	1.5
Jul-18	2.21	Feb-20	1.62	Sep-21	1.48
Aug-18	2.46	Mar-20	1.66	Oct-21	1.5
Sep-18	2.51	Apr-20	1.87	Nov-21	1.53
Oct-18	2.32	May-20	1.79	Dec-21	1.5
Nov-18	2.25	Jun-20	1.7	Jan-22	1.51
Dec-18	2.07	Jul-20	1.6	Feb-22	1.51
Jan-19	1.82	Aug-20	1.65	Mar-22	1.47
Feb-19	1.79	Sep-20	1.58	Apr-22	1.39
Mar-19	1.83	Oct-20	1.47	May-22	1.3
Apr-19	1.89	Nov-20	1.52	Jun-22	1.32
May-19	2.76	Dec-20	1.46	Jul-22	1.34
Jun-19	1.78	Jan-21	1.46	Aug-22	1.34
Jul-19	1.86	Feb-21	1.47	Sep-22	1.32

csv_yahoo-search-market-share-w...
电子表格

How was the overall trend of Yahoo! Search engine market share?

From the data:

- Time period:** 2018–2025
- Starting share (Jan 2018):** 1.83%
- Ending share (most recent value):** 1.34%
- Average share:** ~1.55%
- Overall trend:** The market share of Yahoo! Search has decreased over time.

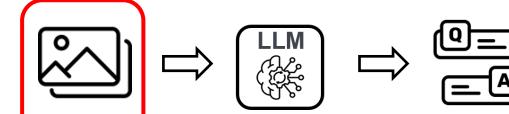
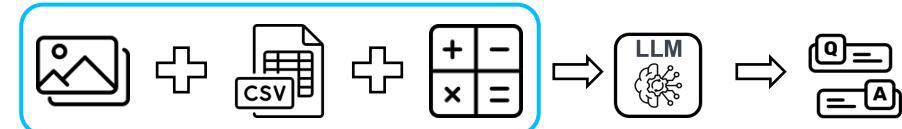
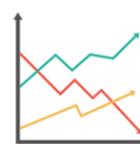
In summary, Yahoo's global search engine market share shows a **gradual decline** between 2018 and 2025. ⓘ

Precise but not semantically insightful

How to make them **complement** each other?

Parameter	Equation
Mean	$T1 = \frac{\sum_{n=1}^N s(t)}{N}$
Standard deviation	$T2 = \sqrt{\frac{\sum_{n=1}^N (s(t) - T1)^2}{N - 1}}$
Variance	$T3 = \left(\frac{\sum_{n=1}^N \sqrt{ s(t) }}{N} \right)^2$
RMS	$T4 = \sqrt{\frac{\sum_{n=1}^N (s(t))^2}{N}}$
Absolute maximum	$T5 = \max s(t) $
Coefficient of skewness	$T6 = \frac{\sum_{n=1}^N (s(t) - T1)^3}{(N - 1)(T2)^3}$
Kurtosis	$T7 = \frac{\sum_{n=1}^N (s(t) - T1)^4}{(N - 1)(T2)^4}$

CSVs
/o coherently.



Parameter	Equation
Mean	$T1 = \frac{\sum_{n=1}^N s(t)}{N}$
Standard deviation	$T2 = \sqrt{\frac{\sum_{n=1}^N (s(t) - T1)^2}{N - 1}}$
Variance	$T3 = \left(\frac{\sum_{n=1}^N \sqrt{ s(t) }}{N} \right)^2$
RMS	$T4 = \sqrt{\frac{\sum_{n=1}^N (s(t))^2}{N}}$
Absolute maximum	$T5 = \max s(t) $
Coefficient of skewness	$T6 = \frac{\sum_{n=1}^N (s(t) - T1)^3}{(N - 1)(T2)^3}$
Kurtosis	$T7 = \frac{\sum_{n=1}^N (s(t) - T1)^4}{(N - 1)(T2)^4}$

Idea — What if we ...

- 1 Combine both images and CSVs
- 2 Add mathematical algorithm

? Accuracy↑
Improvement
by how much?

2 Basics

- **Chart Image**
- **Time Series Data**
- **Mathematical Methods**
- **Multimodal LLM**

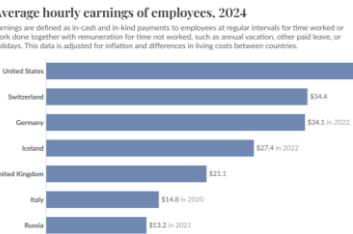
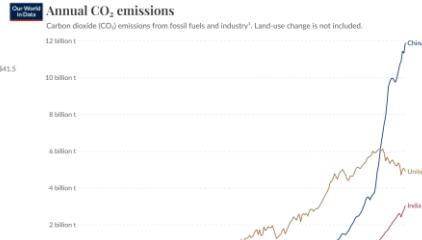
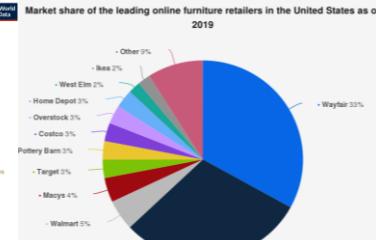
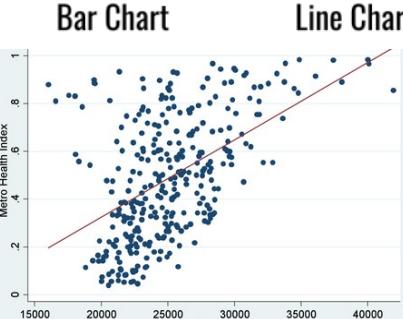
Basics

Chart Image — Data Visualization

Data Visualization:

Abstract data → Visual chart image

year	total_app	nber11_inforce	nber12_inforce	nber13_inforce	nber14_inforce			
1840	735	114	64	23	6			
1841	847	129	70	26	6			
1842	761	144	79	35	10			
1843	819	156	84	36	11			
1844	1049	167	89	36	13			
1845	1246	158	94	41	14			
1846	1272	201	102	44	16			
1847	1531	216	105	47	17			
1848	1628	218	116	50	17			
1849	1955	241	116	52	17			
1850	2193	244	125	55	16			
1851	2258	244	114	55	15			
1852		X1	1.0_Motor	Herstellernummer	Werknummer			
1853	1	3	K1HE1-101-101-7	101	101	0	NA	0
1854	2	3	K1HE1-101-101-12	101	101	0	NA	0
1855	3	3	K1HE1-101-101-10	101	101	0	NA	0
1856	4	4	K1HE1-101-101-2	101	101	0	NA	0
1857	5	4	K1HE1-101-101-1	101	101	0	NA	0
1858	6	6	K1HE1-101-101-11	101	101	0	NA	0
1859	7	3	K1HE1-101-101-42	101	101	0	NA	0
1860	8	3	K1HE1-101-101-55	101	101	1	2010/4/7	31787
1859	9	9	K1HE1-101-101-77	101	101	0	NA	0
1860	10	10	K1HE1-101-101-101	101	101	0	NA	0
1861	11	11	K1HE1-101-101-206	101	101	1	2010/4/7	31787
1862	12	11	K1HE1-101-101-231	101	101	1	2010/4/8	31836
1863	13	13	K1HE1-101-101-38	101	101	0	NA	0
1864	14	14	K1HE1-101-101-97	101	101	0	NA	0
1865	15	15	K1HE1-101-101-45	101	101	1	2010/4/7	31787
1864	16	16	K1HE1-101-101-53	101	101	0	NA	0
1865	17	17	K1HE1-104-104-118	104	104	0	NA	0
1866	18	18	K1HE1-101-101-300	101	101	0	NA	0
1867	19	19	K1HE1-101-101-98	101	101	0	NA	0
1868	20							
1869	21							
1870	22							
1871	23							
1872	24							
1873	25							
1874	26							
	27							
	28							
	29		U.S					25 in %
	30		Russia					8 in %
	31		China					6 in %
	32		India					4 in %
	33		South Korea					3 in %
	34		Japan					3 in %
	35		Pakistan					3 in %
	36		Egypt					2 in %
	37		Turkey					2 in %
	38		France					2 in %
	39		Other					42 in %



- Scatter Plot (correlation)

- Heat Map (distribution)

Basics

Time Series Data

- Definition: Time series data = data with a **time dimension**.

Line chart + **time axis** → time series visualization

30	China	CHN	2013	75.06715
31	China	CHN	2014	72.53596
32	China	CHN	2015	69.58662
33	China	CHN	2016	67.76849
34	China	CHN	2017	67.07654
35	China	CHN	2018	66.47819
36	China	CHN	2019	64.70627
37	China	CHN	2020	63.27183
38	China	CHN	2021	62.4995
39	China	CHN	2022	61.16914
40	China	CHN	2023	60.84609
41	China	CHN	2024	58.17634
42	Germany	DEU	1985	59.87745
43	Germany	DEU	1986	60.22496
44	Germany	DEU	1987	57.93664
45	Germany	DEU	1988	56.48581
46	Germany	DEU	1989	55.92411
47	Germany	DEU	1990	57.1
48	Germany	DEU	1991	57.1
49	Germany	DEU	1992	57.1
50	Germany	DEU	1993	57.1

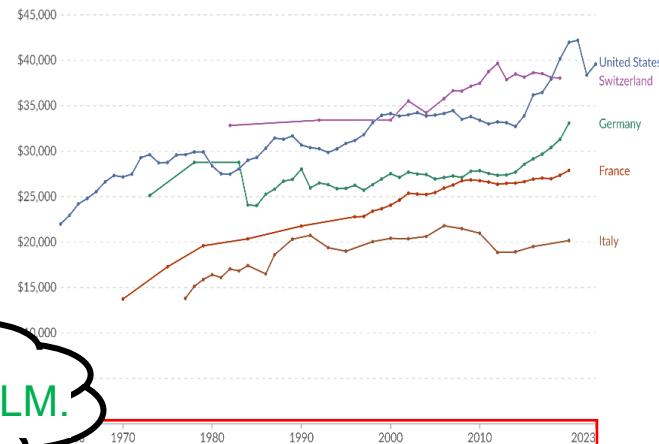
Visualization
→

Directly readable by LLM.

Median income (after tax), 1963 to 2023

This data is adjusted for inflation and for differences in living costs between countries. Income here is measured after taxes and benefits.

Our
World
inData



Time Series Data	CSV	Time-indexed Data Frame	NumPy Array
Data Structure	Text-based table	Pandas structure	Numerical array

Basics

Mathematical Methods

Why Combine Mathematical Methods?

- Quantifies raw numerical data
- Provides descriptive semantical meaning

! Conclusion:

Mathematical methods bridge the gap between numerical values and semantic understanding.

```
[1]: import pandas as pd
import numpy as np
from scipy.stats import skew, kurtosis
from scipy.signal import find_peaks
import matplotlib.pyplot as plt

# === Load CSV File ===
file_path = '/drive/csv_yahoo-search-market-share-worldwide-2018-2022.csv'
df = pd.read_csv(file_path)

# Display CSV preview
df.head()

Matplotlib is building the font cache; this may take a moment.
```

```
[1]:   Date  Global search engine traffic market share of Yahoo! Search
0  2018-01           1.83
1  2018-02           1.94
2  2018-03           2.13
3  2018-04           2.09
4  2018-05           2.08
```

- Raw CSV data

	Feature	Description	Python Packages (other than numpy, pandas)
Time-Domain	Max, Min, Range Peaks and Valleys	Captures amplitude variation. Local maxima and minima counts and	(custom logic) scipy / (custom logic)

```
[2]: # === Feature Extraction ===
value_col = df.select_dtypes(include=[np.number]).columns[0]
data = df[value_col].values

# Time-Domain Features
max_val = np.max(data)
min_val = np.min(data)
range_val = max_val - min_val

peaks, _ = find_peaks(data)
valleys, _ = find_peaks(-data)
num_peaks = len(peaks)
num_valleys = len(valleys)

trend_coeff = np.polyfit(np.arange(len(data)), data, deg=1)[0]
volatility = pd.Series(data).rolling(window=3, center=True).std().mean()
skewness = skew(data)
kurtosis = kurtosis(data)

# Statistical Features
mean_val = np.mean(data)
std_val = np.std(data)
iqr_val = np.percentile(data, 75) - np.percentile(data, 25)

# Print Results
print("==== Time-Domain Features ====")
print(f"Max: {max_val:.4f}")
print(f"Min: {min_val:.4f}")
print(f"Range: {range_val:.4f}")
print(f"Number of Peaks: {num_peaks}")
print(f"Number of Valleys: {num_valleys}")
print(f"Trend (slope): {trend_coeff:.6f}")
print(f"Volatility (avg rolling std): {volatility:.6f}")
print(f"Skewness: {skewness:.6f}")
print(f"Kurtosis: {kurtosis:.6f}")
print("==== Statistical Features ====")
print(f"Mean: {mean_val:.4f}")
print(f"Std Dev: {std_val:.4f}")
print(f"IQR: {iqr_val:.4f}")
```

- Algorithm-Based Mathematical Analysis

$$\text{Parameter} \quad \text{Equation}$$
$$\frac{\sum_{n=1}^N s(t)}{N}$$
$$\sqrt{\frac{\sum_{n=1}^N (s(t) - T_1)^2}{N-1}}$$
$$\sqrt{\left(\frac{\sum_{n=1}^N \sqrt{|s(t)|}}{N}\right)^2}$$
$$\sqrt{\frac{\sum_{n=1}^N (s(t))^2}{N}}$$

===== Time-Domain Features =====
Max: 2.7600
Min: 1.0800
Range: 1.6800
Number of Peaks: 19
Number of Valleys: 19
Trend (slope): -0.012723
Volatility (avg rolling std): 0.069175
Skewness: 1.042926
Kurtosis: 0.833659

===== Statistical Features =====
Mean: 1.5480
Std Dev: 0.3614
IQR: 0.5200

- Extracted Numerical Results

How to connect with LLM?

Basics

Mathematical Methods

Connection with LLM

Jan-18	1.83	Aug-18	1.8	Mar-21	1.48
Feb-18	1.94	Sep-18	1.64	Apr-21	1.52
Mar-18	2.13	Oct-18	1.61	May-21	1.5
Apr-18	2.09	Nov-18	1.5	Jun-21	1.5
May-18	2.08	Dec-18	1.59	Jul-21	1.47
Jun-18	2.06	Jan-20	1.64	Aug-21	1.5
Jul-18	2.02	Feb-20	1.62	Sep-21	1.49
Aug-18	2.46	Mar-20	1.66	Oct-21	1.5
Sep-18	2.51	Apr-20	1.87	Nov-21	1.53
Oct-18	2.52	May-20	1.79	Dec-21	1.5
Nov-18	2.53	Jun-20	1.7	Jan-22	1.51
Dec-18	2.07	Jul-20	1.6	Feb-22	1.51
Jan-19	1.82	Aug-20	1.65	Mar-22	1.47
Feb-19	1.78	Sep-20	1.58	Apr-22	1.5
Mar-19	1.83	Oct-20	1.47	May-22	1.3
Apr-19	1.89	Nov-20	1.52	Jun-22	1.32
May-19	2.76	Dec-20	1.46	Jul-22	1.34
Jun-19	1.73	Jan-21	1.49	Aug-22	1.35
Jul-19	1.86	Feb-21	1.47	Sep-22	1.32

CSV

Question

python

复制代码

```
import pandas as pd
import numpy as np
from scipy.stats import linregress

# Load and clean data
data = pd.read_csv("csv_yahoo-search-market-share-worldwide-2018-2025.csv")
data.columns = ["Date", "MarketShare"]
data["MarketShare"] = data["MarketShare"].astype(float)

# --- Time-domain features ---
x = np.arange(len(data))
y = data["MarketShare"].values

# Trend analysis
slope, intercept, r_value, p_value, std_err = linregress(x, y)
autocorr = data["MarketShare"].autocorr(lag=1)
volatility_ratio = data["MarketShare"].std() / data["MarketShare"].mean()

# --- Statistical features ---
features = {
    "Mean": np.mean(y),
    "Median": np.median(y),
    "Standard Deviation": np.std(y),
    "Minimum": np.min(y),
    "Maximum": np.max(y),
    "Range": np.max(y) - np.min(y),
    "25th Percentile": np.percentile(y, 25),
    "75th Percentile": np.percentile(y, 75),
    "Trend Slope": slope,
    "Trend Intercept": intercept,
    "Autocorrelation (lag=1)": autocorr,
    "Volatility Ratio (std/mean)": volatility_ratio,
    "Data Length (N)": len(y)
}

features_df = pd.DataFrame(list(features.items()), columns=["Feature", "Value"])
print(features_df)
```

Math Result

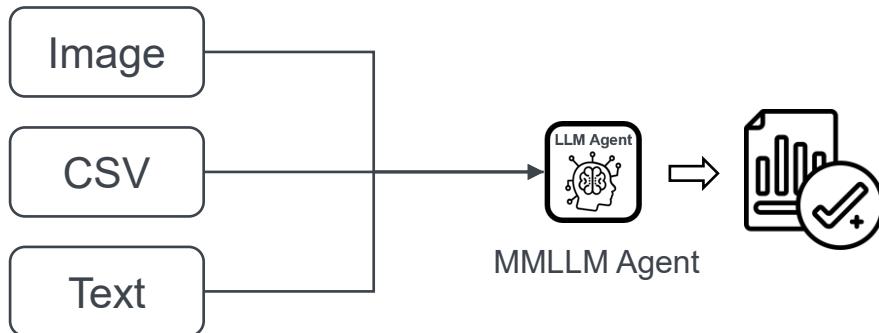
```
===== Time-Domain Features =====
Max: 2.7600
Min: 1.0800
Range: 1.6800
Number of Peaks: 19
Number of Valleys: 19
Trend (slope): -0.012723
Volatility (avg rolling std): 0.091100
Skewness: 1.042926
Kurtosis: 0.833659

===== Statistical Features =====
Mean: 1.5480
Std Dev: 0.3614
IQR: 0.5200
```

Basics

Multimodal LLM

- Key: MMLLM can **integrate** info from **different types of data modalities**
 - **Visual** modality (Chart image) provides **semantic** cues.
 - **Numerical** modality (CSV) enables **exact** numerical computation.
 - **Textual** modality (Question) defines **reasoning** intent. (User Intention)
- From Manual to **Autonomous** Interpretation



- The Multimodal LLM combines **Visual**, **Numerical**, and **Textual** modalities with **Mathematical Methods**, achieving autonomous chart analysis.

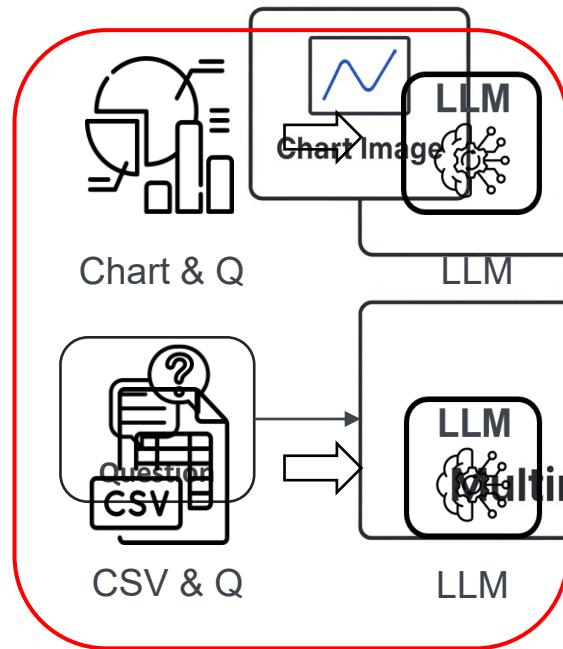
3 Conceptual Design

- **System Overview**
- **System Design**

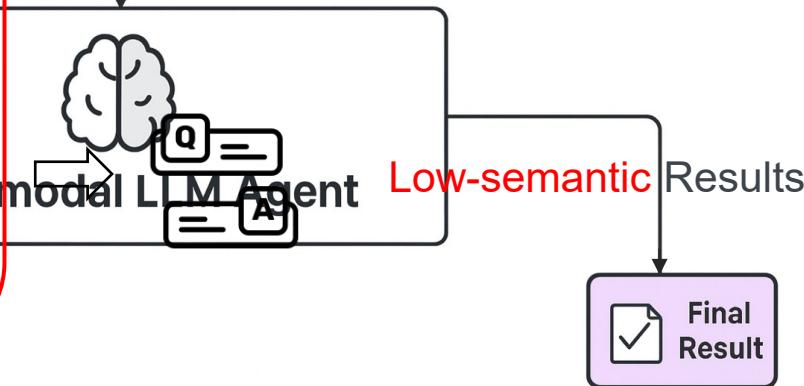
Conceptual Design

System Overview

- Single-modality analysis

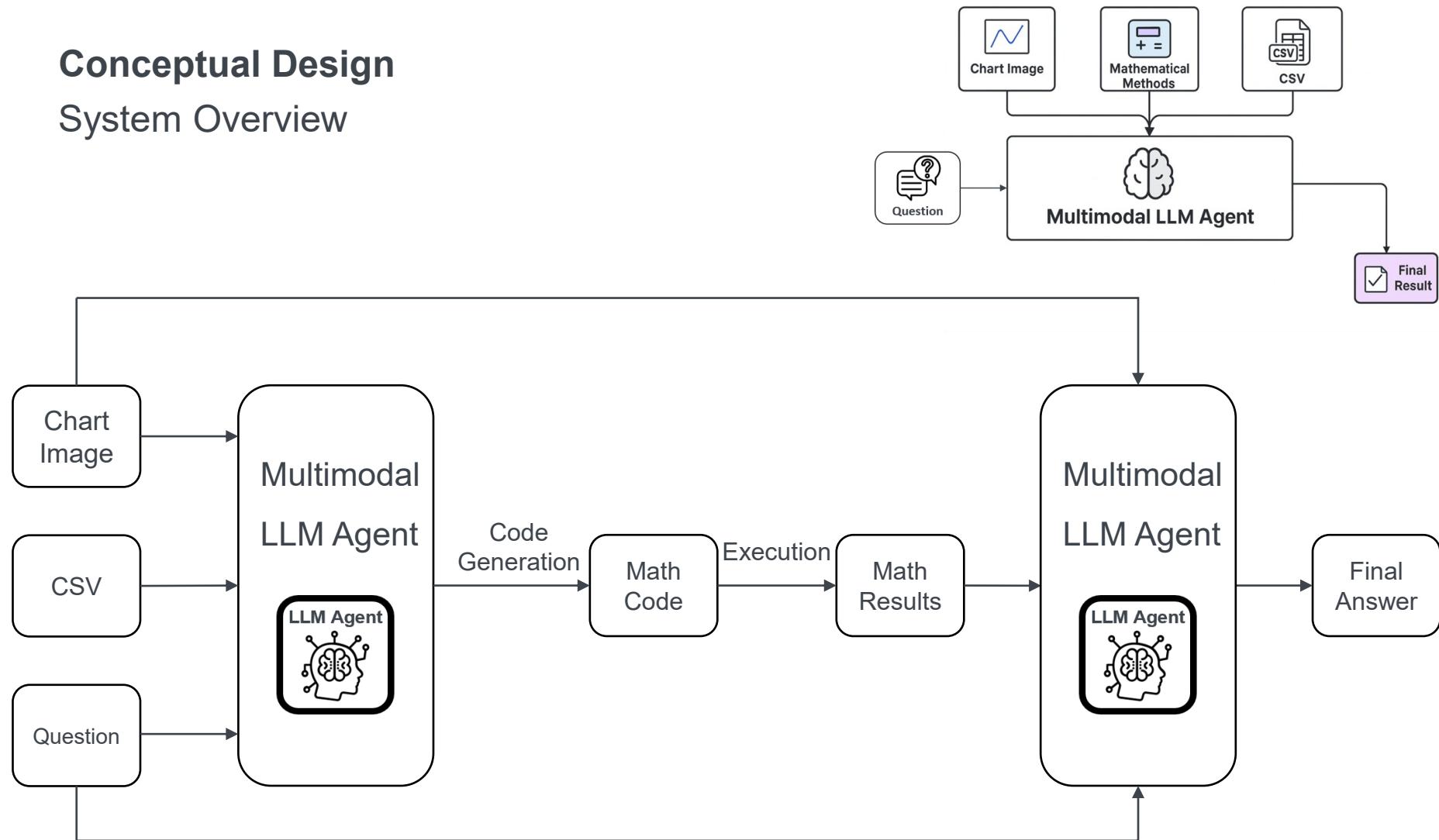


- Multi-modalities analysis



Conceptual Design

System Overview

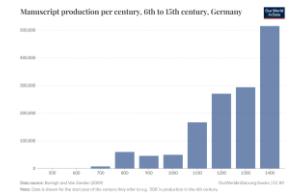


4 Experiment

- Multimodal Data Input
- LLM-Based Analysis
- Feature Planning
- Code Generation & Execution
- Raw Extracted Results
- Answer Synthesis

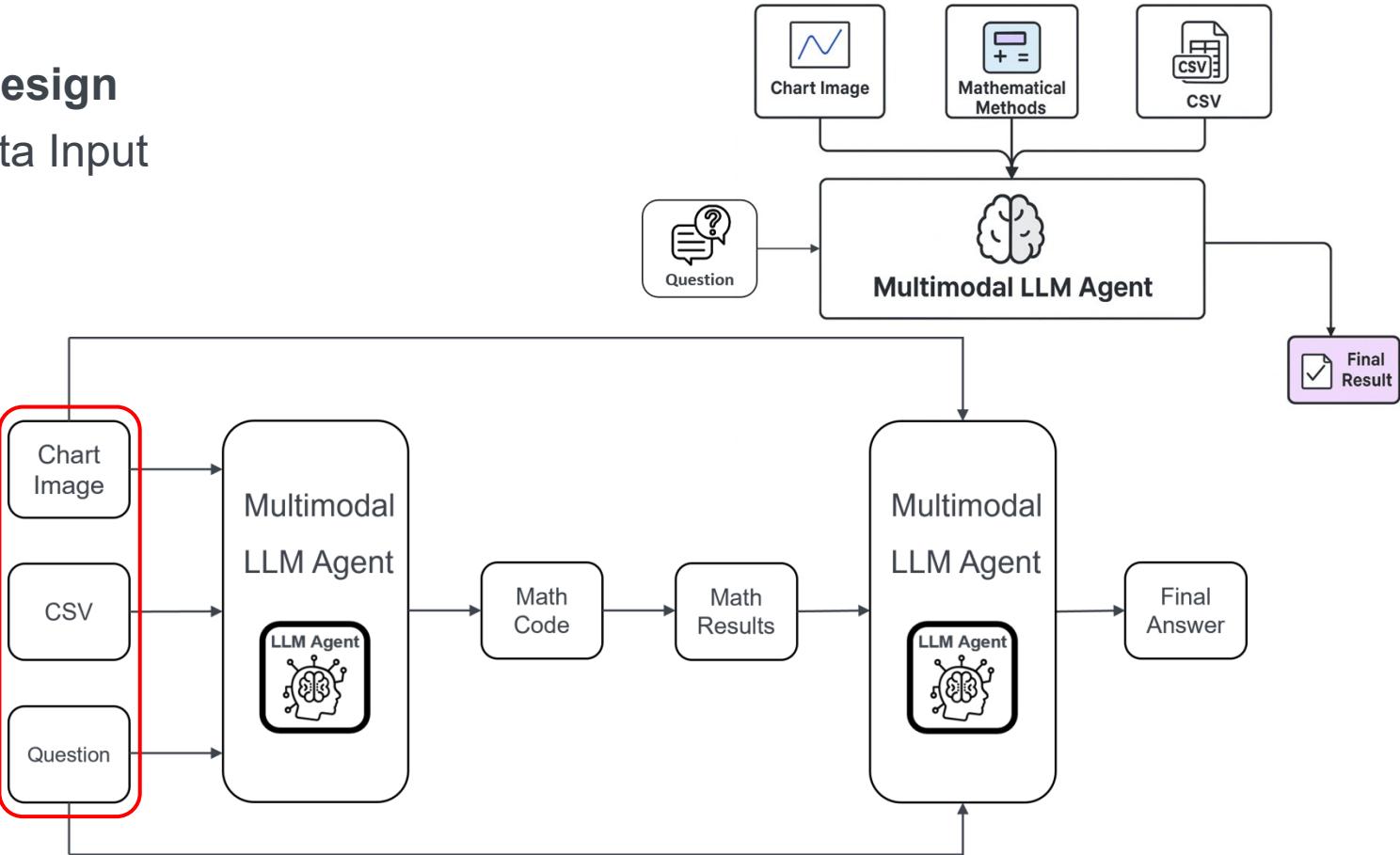
Conceptual Design

Multimodal Data Input



Entity	Code	Year	Manuscript
Germany	DEU	500	0
Germany	DEU	600	0
Germany	DEU	700	7503
Germany	DEU	800	59771
Germany	DEU	900	45703
Germany	DEU	1000	49548
Germany	DEU	1100	166876
Germany	DEU	1200	270392
Germany	DEU	1300	293814
Germany	DEU	1400	515116

What overall trend can be observed in manuscript production from the 8th to the 15th century?



Stage 1: Image CSV Question Analysis

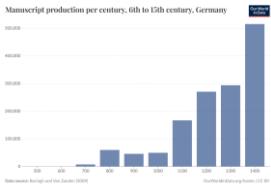
Image path: `C:\Users\xwjbuer\Desktop\Test\015\015-manuscript-production-century2.png`

Analysis question: `What overall trend can be observed in manuscript production from the 8th century to the 15th century?`

CSV path: `C:\Users\xwjbuer\Desktop\Test\015\manuscript-production-century.filtered\manuscript-production-century.csv`

Conceptual Design

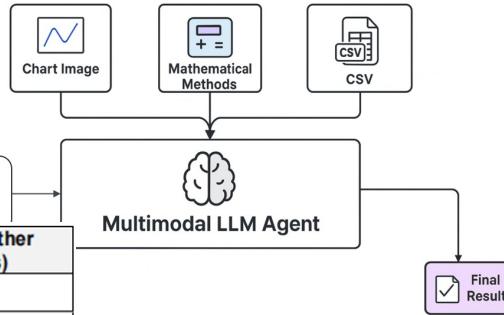
LLM-Based Analysis



Entity	Code	Year	Manuscript
Germany	DEU	500	0
Germany	DEU	600	0
Germany	DEU	700	7503
Germany	DEU	800	59771
Germany	DEU	900	45703
Germany	DEU	1000	49548
Germany	DEU	1100	166876
Germany	DEU	1200	270392
Germany	DEU	1300	293814
Germany	DEU	1400	515116

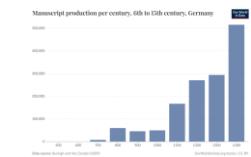
What overall trend can be observed in manuscript production from the 8th to the 15th century?

	Feature	Description	Python Packages (other than numpy, pandas)
Time-Domain Features	Max, Min, Range	Captures amplitude variation.	(custom logic)
	Peaks and Valleys	Local maxima and minima counts and positions.	scipy / (custom logic)
	Rise Time and Fall Time	Duration for rising or falling between thresholds.	(custom logic)
	Trend	Long-term movement via moving averages or regression.	(custom logic)
	Volatility	Variation over a moving window.	(custom logic)
	Skewness	Asymmetry of value distribution.	scipy / (custom logic)
	Kurtosis	Sharpness of the distribution peak.	scipy / (custom logic)
	Edge Detection	Identifies abrupt changes in values.	scipy / (custom logic)
	Sliding Window Features	Rolling metrics (mean, std, max, min, etc.) for local dynamics.	scipy / (custom logic)
Frequency-Domain Features	Zero-Crossing Rate (ZCR)	Times the signal crosses zero.	(custom logic)
	Spectral Power	Energy across frequency components.	scipy / (custom logic)
	Dominant Frequency	Frequency with the highest energy.	scipy / (custom logic)
Statistical Features	Frequency Bandwidth	Frequency range around the dominant frequency.	scipy / (custom logic)
	Mean	Average pattern of the series.	(custom logic)
	Standard Deviation	Magnitude of fluctuation around the statistical mean.	(custom logic)
	Interquartile Range (IQR)	Range between the 25th and 75th percentiles.	(custom logic)
	Repeating Patterns	Detects cyclic or recurring structures.	statsmodels / (custom logic)
	Sample Entropy	Measure of randomness or irregularity.	entropy, nolds / (custom logic)

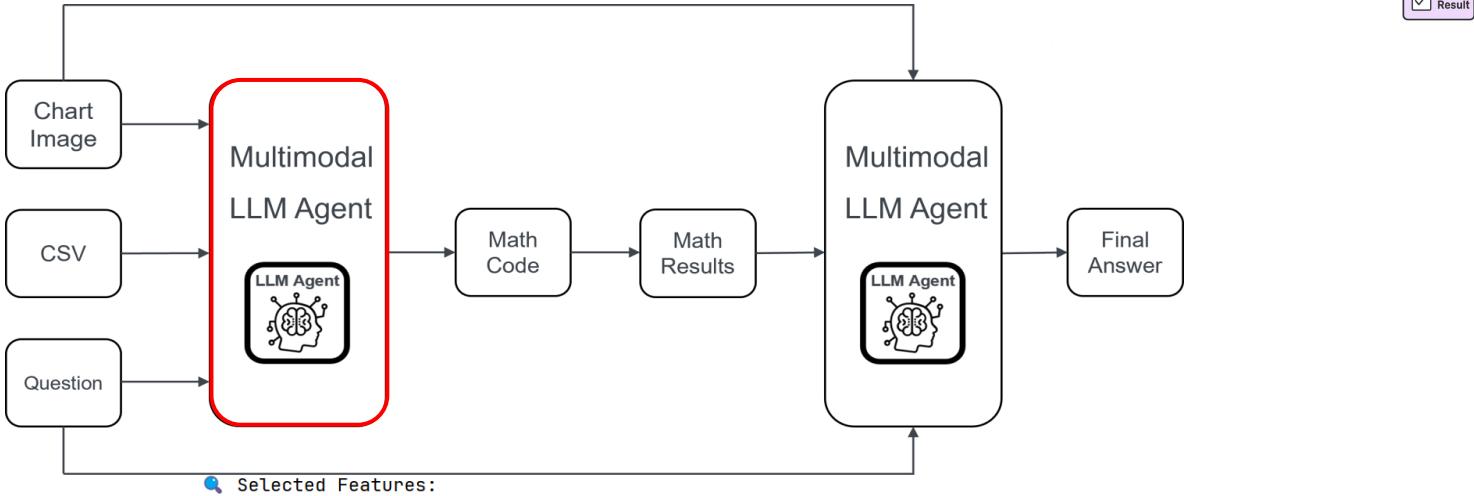


Conceptual Design

LLM-Based Reasoning



What overall trend can be observed in manuscript production from the 8th to the 15th century?



LLM-Based Analysis Results

- Which feature?
- Why this feature?
- How to calculate?

1. **category_max** [Bar Chart Features]
 - Reason: Identifies the century with the highest manuscript production, indicating an increasing trend.
 - Priority: high
 - Calculation: Find the century with the maximum bar height.
2. **category_min** [Bar Chart Features]
 - Reason: Identifies the century with the lowest manuscript production, supporting the trend analysis.
 - Priority: medium
 - Calculation: Find the century with the minimum bar height.
3. **difference_between_categories** [Bar Chart Features]
 - Reason: Calculates the increase in manuscript production over the centuries.
 - Priority: high
 - Calculation: Compute the difference between the maximum and minimum values.

```

❸ Generated feature extraction code:
-----
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import json

def convert_to_serializable(obj):
    """Convert non-serializable objects to serializable formats."""
    if isinstance(obj, (np.integer, np.floating)):
        return obj.item()
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, pd.Timestamp):
        return obj.isoformat()
    else:
        return str(obj)

def detect_column_types(df):
    """Detect column types based on name patterns and data types."""
    time_columns = []
    value_columns = []
    category_columns = []

    for col in df.columns:
        col_lower = col.lower()
        if any(keyword in col_lower for keyword in ['year', 'date', 'time', 'day', 'month']):
            time_columns.append(col)
        elif pd.api.types.is_numeric_dtype(df[col]):
            value_columns.append(col)
        elif any(keyword in col_lower for keyword in ['category', 'entity', 'country', 'region']):
            category_columns.append(col)

    return time_columns, value_columns, category_columns

def extract_features_from_bar_chart(csv_file_path):
    """Extract selected features from a bar chart data."""
    # Read the CSV file
    df = pd.read_csv(csv_file_path)

    # Detect column types
    time_columns, value_columns, category_columns = detect_column_types(df)

    # Determine the x-axis and y-axis based on Stage A context
    # Stage A indicates a time span from 8th to 15th century, so we use 'Year' as x-axis
    # and 'Manuscript production per century' as y-axis
    x_axis = next((col for col in time_columns if 'year' in col.lower()), None)
    y_axis = next((col for col in value_columns if 'manuscript production' in col.lower()), None)

    if not x_axis or not y_axis:
        raise ValueError("Required columns for x-axis or y-axis not found.")

    # Extract features
    features = {}

    # Feature: category_max
    max_value = df[y_axis].max()
    max_century = df.loc[df[y_axis] == max_value, x_axis].iloc[0]
    features['category_max'] = {
        'century': convert_to_serializable(max_century),
        'value': convert_to_serializable(max_value)
    }

    # Feature: category_min
    min_value = df[y_axis].min()
    min_century = df.loc[df[y_axis] == min_value, x_axis].iloc[0]
    features['category_min'] = {
        'century': convert_to_serializable(min_century),
        'value': convert_to_serializable(min_value)
    }

    # Feature: category_min
    min_value = df[y_axis].min()
    min_century = df.loc[df[y_axis] == min_value, x_axis].iloc[0]
    features['category_min'] = {
        'century': convert_to_serializable(min_century),
        'value': convert_to_serializable(min_value)
    }

    # Feature: difference_between_categories
    difference = max_value - min_value
    features['difference_between_categories'] = convert_to_serializable(difference)

    return features

def main():
    # Define the CSV file path
    csv_file_path = r'C:\Users\xwjbuer\Desktop\Test\DI5\manuscript-production-century.filtered\manuscript-production-century.csv'

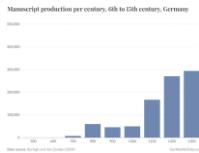
    # Extract features
    features = extract_features_from_bar_chart(csv_file_path)

    # Print results as JSON
    print(json.dumps(features, indent=4))

if __name__ == "__main__":
    main()
-----
```

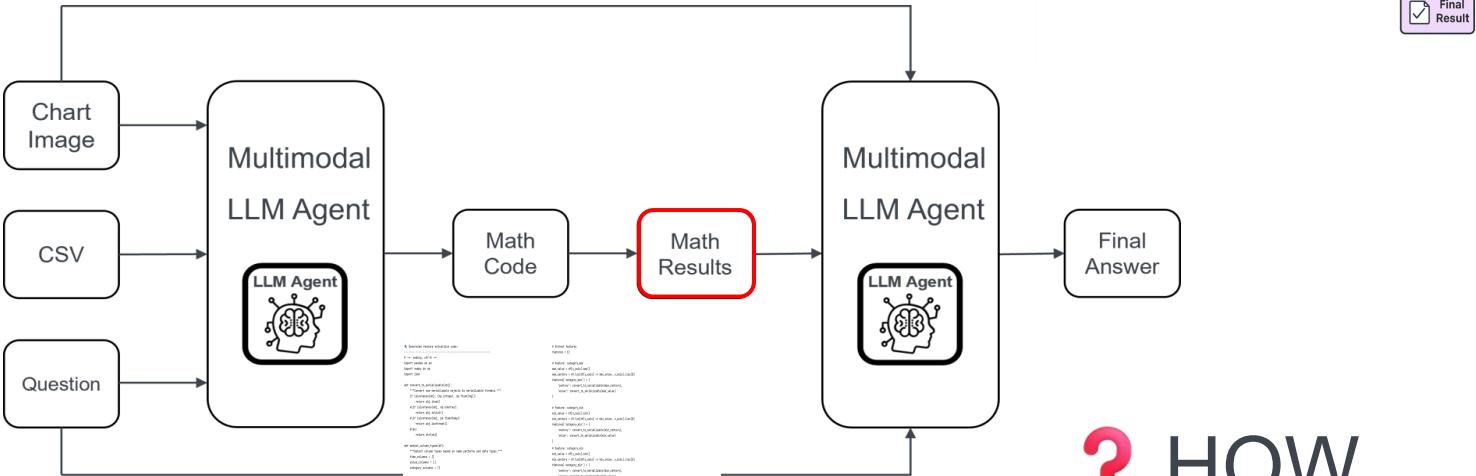
Conceptual Design

Raw Numerical Results



Entity	Code	Year	Manuscript
Germany	DEU	500	0
Germany	DEU	600	0
Germany	DEU	700	7503
Germany	DEU	800	59771
Germany	DEU	900	45703
Germany	DEU	1000	49548
Germany	DEU	1100	166876
Germany	DEU	1200	270392
Germany	DEU	1300	293814
Germany	DEU	1400	515116

What overall trend can be observed in manuscript production from the 8th to the 15th century?



⚡ Executing feature extraction...

=====

Feature extraction results:

```
{  
  "raw_output": "{'category_max': {'century': 1400, 'value': 515116}, 'category_min': {'century': 500, 'value': 0}, 'difference_between_categories': 515116}"  
}
```

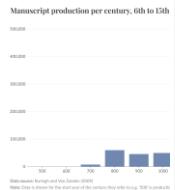
=====

✓ Feature extraction completed!

Precise but
Non-semantic

HOW
➡ Precise and
Semantic

Conce Answe



What overall trend was observed in manufac-
turing production from the 15th century?

ting feature extraction.

Feature extraction results:

```
-----  
ture extraction completed!
```

```
def synthesize_answer(self, extracted_features): 1 usage
    """
    Stage 3: Use extracted features to generate final answer
    """
    print("\n⌚ Stage 3: Synthesizing final answer...")
    print("=" * 60)

    # Build prompt with extracted features and original question
    prompt = f"""
Based on the following extracted features and the original question, provide a precise answer.
```

Original Question: `{self.experiment_log['inputs']['question']}`

Chart Type: {self.chart_type}

Extracted Features:

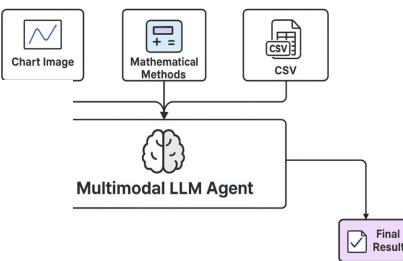
```
{json.dumps(extracted_features, indent=2)}
```

Instructions:

- Use the features directly to answer the question.
- If the features contain multiple values, focus on the most relevant ones.
- Be specific and include numerical values where available.
- If the question involves comparison, highlight the differences.
- Keep the answer clear and to the point.
- If the features don't fully answer the question, explain what's missing.

Answer:

11



Final Answer

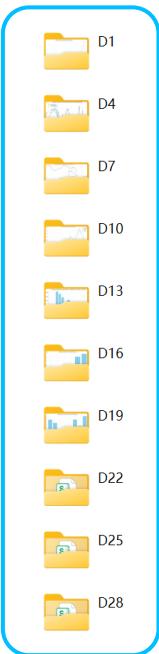
century to the 15th century. Its peak in the 15th century, the 6th century. This over the centuries.

5 Evaluation & Analysis

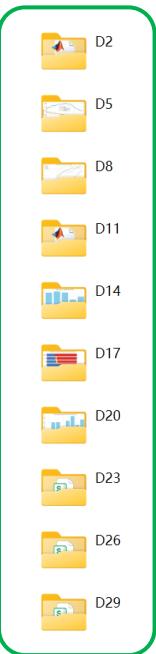
- **Test Case**
- **Experiment Example**
- **Experiment Results**
- **Evaluation & Analysis**

Evaluation & Analysis

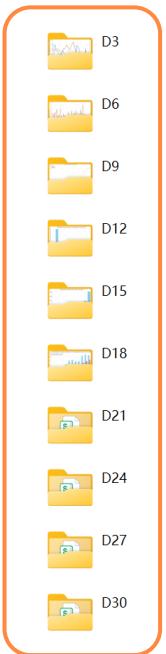
Test Case



Line



Bar

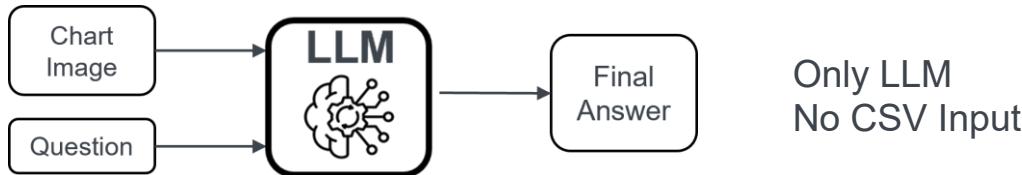


Pie

Evaluation & Analysis

Ablation Experiment

Baseline:



GPT-Analyzer:

Ablation: Without Mathematical Algorithm

Evaluation & Analysis

Test Case Example

Baseline:

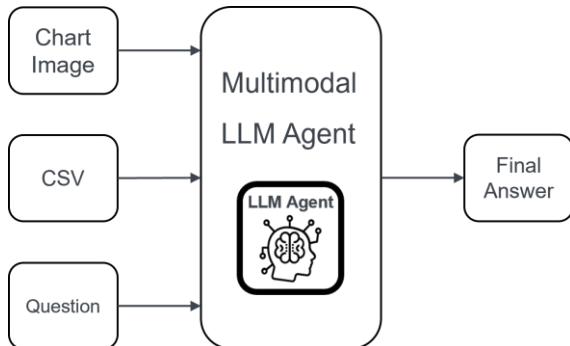
Image
 CSV
 Math

Image
 CSV
 Math

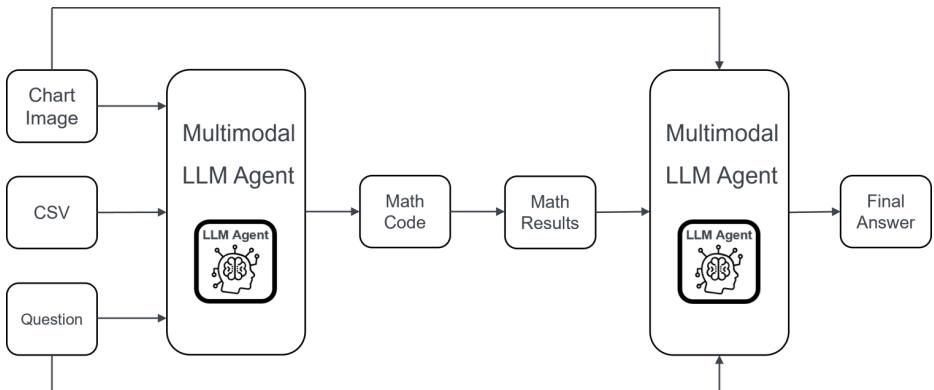
Image
 CSV
 Math

Question System Type	What overall trend can be observed in manuscript production from the 8th century to the 15th century?
Baseline	Manuscript production generally increased over the centuries, with slow growth before the 11th century, followed by rapid expansion from the 12th to the 15th century.
Ablation Experiment	Manuscript production in Germany shows a strong upward trend from the 8th to the 15th century — starting at a very low level in the early centuries and increasing steadily , with the most rapid growth after the 11th century, reaching its peak in the 15th century at over 500,000 manuscripts.
GPT-Analyzer	From the 8th century to the 15th century, manuscript production shows a significant upward trend. Starting from 7,503 manuscripts in the 8th century , production increased to 515,116 manuscripts by the 15th century . The most notable increases occurred between the 11th and 12th centuries (an increase of 103,516 manuscripts) and between the 13th and 14th centuries (an increase of 221,302 manuscripts). Overall, there is a clear and substantial growth in manuscript production over these centuries.

Ablation:



GPT-Analyzer:



Evaluation & Analysis

Experiment Results

Chart Nr.	Metric	Baseline	Ablation	GPT-Analyzer	Chart Type
1	Correctness	0	0	1	line
	Accuracy	0	0	1	line
2	Correctness	1	1	1	line
	Accuracy	0	0	1	line
3	Correctness	1	1	1	line
	Accuracy	0	0.5	1	line
4	Correctness	1	1	1	line
	Accuracy	0	1	1	line
5	Correctness	1	1	1	line
	Accuracy	0	0	1	line
6	Correctness	1	0	1	line
	Accuracy	1	0	1	line
7	Correctness	1	1	1	line
	Accuracy	0	0.5	1	line
8	Correctness	0	1	1	line
	Accuracy	0	0	1	line
9	Correctness	1	1	1	line
	Accuracy	0	0	1	line
10	Correctness	1	1	1	line
	Accuracy	0	0.5	1	line
11	Correctness	0	1	1	bar
	Accuracy	0	1	1	bar
12	Correctness	1	1	1	bar
	Accuracy	0	0.5	1	bar
13	Correctness	1	1	1	bar
	Accuracy	0	0.5	1	bar
14	Correctness	1	1	1	bar
	Accuracy	0.5	0.5	0.5	bar
15	Correctness	0	0	1	bar
	Accuracy	0	0	1	bar
16	Correctness	1	1	1	bar
	Accuracy	0	0.5	1	bar
17	Correctness	0	0	1	bar
	Accuracy	0	0	1	bar
18	Correctness	1	1	1	bar
	Accuracy	0	0	1	bar
19	Correctness	0	1	1	bar
	Accuracy	0	1	1	bar
20	Correctness	1	1	0	bar
	Accuracy	0	1	0	bar
21	Correctness	1	1	1	pie
	Accuracy	0	1	1	pie
22	Correctness	1	1	1	pie
	Accuracy	0	1	1	pie
23	Correctness	1	1	1	pie
	Accuracy	0	1	1	pie
24	Correctness	1	1	1	pie
	Accuracy	1	1	1	pie
25	Correctness	1	1	1	pie
	Accuracy	1	1	1	pie
26	Correctness	1	1	1	pie
	Accuracy	1	1	1	pie
27	Correctness	0	0	0	pie
	Accuracy	0	0	0	pie
28	Correctness	1	1	1	pie
	Accuracy	0	1	1	pie
29	Correctness	1	1	1	pie
	Accuracy	0	1	1	pie
30	Correctness	0	1	1	pie
	Accuracy	0	1	1	pie

Metrics:

- **Correctness** measures whether the **answer correctly** addresses the question.
- **Accuracy** measures **precision of numerical values** in the correct answer.

Image

CSV

Math

Image

CSV

Math

Image

CSV

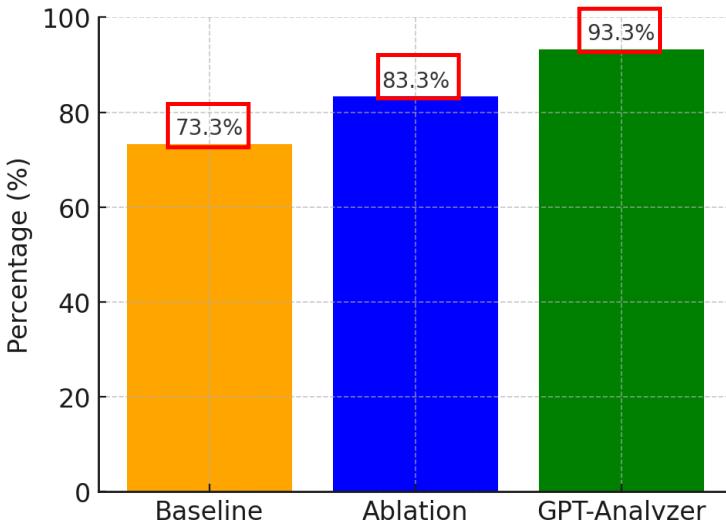
Math

Score	Baseline	Ablation	GPT-Analyzer
Correctness	22/30	25/30	28/30
Accuracy	4.5/30	16.5/30	27.5/30

Evaluation & Analysis

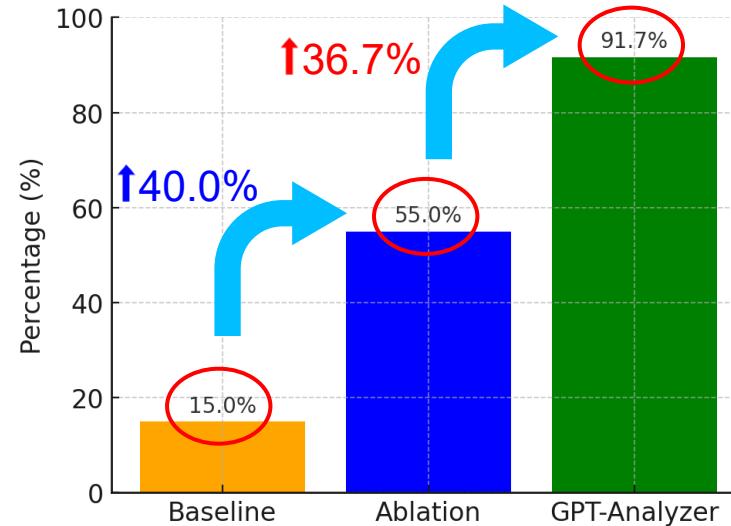
Evaluation & Analysis

Overall Correctness

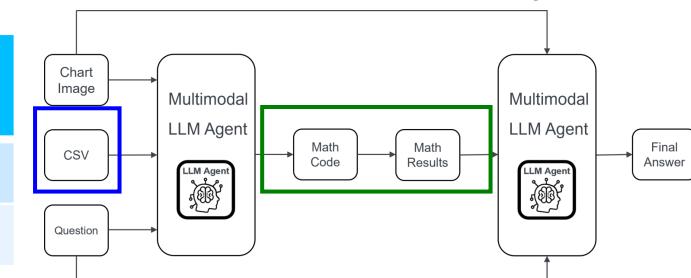


- In conclusion, these results clearly show that combining **math code** with **LLM reasoning** significantly enhances LLM's analysis in handling numerical data.

Overall Accuracy



Metric	Baseline	Ablation	GPT-Analyzer
Correctness	73.3%	83.3%	93.3%
Accuracy	15%	55.0% \uparrow	91.7% $\uparrow\uparrow$



6 Summary & Outlook

Summary and Outlook

Summary

- Designed a system to enhance LLM analysis for numerical data
(Combines different **data multimodalities**: **image, textual, CSV**)
- Introduced **mathematical algorithm** to
 - Bridge raw numerical data with **semantic reasoning**
 - Convert plain CSV values into **interpretable features**

Limitation & Future Work

- Current **feature extraction** still relies on predefined algorithms
- Explore **autonomous agent frameworks** for self-improving analysis

Quelle

- Chang C, Wang W Y, Peng W C, et al. Llm4ts: Aligning pre-trained llms as data-efficient time-series forecasters[J]. ACM Transactions on Intelligent Systems and Technology, 2025, 16(3): 1-20.
- Masry A, Long D X, Tan J Q, et al. Chartqa: A benchmark for question answering about charts with visual and logical reasoning[J]. arXiv preprint arXiv:2203.10244, 2022.
- Zhao T, Sun M. Enhancing LLM's interpretability for time series via multi-level aligned embeddings[J].
- Jia N, Yuan C, Wu Y, et al. Improving LLM Interpretability and Performance via Guided Embedding Refinement for Sequential Recommendation[J]. arXiv preprint arXiv:2504.11658, 2025. Jia N, Yuan C, Wu Y, et al. Improving LLM Interpretability and Performance via Guided Embedding Refinement for Sequential Recommendation[J]. arXiv preprint arXiv:2504.11658, 2025.
- <https://www.statista.com/statistics/1219407/market-share-held-by-yahoo-worldwide/?srsltid=AfmBOoparVaxMSIJsHISCMQqsWb-TV9ZDrfIJMNF4DgSsVp91l5NNE1->

Thank you!

Wenjie Xie

e-mail st180778@stud.uni-stuttgart.de

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

