
Resource-Constrained Optimization

for On-Premise Deployment of

Large Language Model Applications

Yuchen Cai

Major: Electromobility

Supervisor: M.Sc. Yuchen Xia

Examiner: Prof. Dr. Ing. Michael Weyrich

October 22, 2025

Institute of Industrial Automation

and Software Engineering

Agenda

1. Introduction

2. Background

3. Important Metrics

4. Experimentation Setup

5. Optimization methods

6. Test and evaluation

7. Conclusion and outlook

1/20/2016University of Stuttgart, IAS 2

Introduction

Large Language Models (LLMs) are transforming industries — enabling automation,

decision support, and knowledge discovery.

Two main deployment approaches: 1. Cloud-Based

2. On-Premise

22/10/2025University of Stuttgart, IAS 4

The LLM Revolution & The Deployment Choice

Introduction

Aspect Cloud-Based On-Premise

Latency Internet-dependent Requires local GPUs and servers

Throughput Elastic / Scalable on-demand Limited by local hardware

Data Security Depends on provider’s policy Full control; no external data transfer

Infrastructure No local investment Requires local GPUs and servers

Scalability Virtually unlimited Limited by GPU and VRAM

Customization Restricted by APIs Full model access and tuning

Cost High CAPEX, low OPEX Pay-as-you-go (high OPEX)

22/10/2025University of Stuttgart, IAS 5

Challenge and Optimization

Introduction

KV Cache

Latency

Throughput

Chunk Prefill
LLM on a server

The Core Challenge

Background

22/10/2025University of Stuttgart, IAS 7

Classification of Existing Optimization Methods

Background

Level Technique Advantage Disadvantage

Inference

KV Caching [1] Avoids recomputation High VRAM

Chunk Prefill [2] Reduces prefill load Adds scheduling cost

Group-Query Attention [3] Faster decoding Slight accuracy loss

Model

Quantization [4] Smaller model Accuracy loss

Pruning [5] Less compute Retraining needed

System

Flash Attention[6] Speeds up attention,

saves memory

Limited to supported GPUs

Paged Attention [7] Dynamic cache

management

Complex implementation

The inference process of Large Language Models (LLMs) is divided into two stages: the

Prefill Stage and the Decode Stage.

22/10/2025University of Stuttgart, IAS 8

LLM Inference Process

Basics

[8] LLM Inference Process visualization

[9] LLM Inference Phases and Key Latency Metrics

22/10/2025University of Stuttgart, IAS 9

Deployment of LLM

Input

Output

NVIDIA A100 80GB PCIe

Cloud GPU Provider

Inference Framework

LLM

GPU NIVIDIA A100 80GB PCIe

FP16 Tensor 312 TFLOPS

Memory 80GB HBM2e

Memory Bandwidth 1935GB/s

Model Meta Llama3-8B

Model parameter size 8B

Architecture Decoder-only Transformer

Attention Heads 32 (GQA enabled)

Hidden Size 4096

Context Length 8019

Precision FP16

Cloud Platform RunPod

CUDA Version 12.8

Operating System Ubuntu 24.04 LTS

PyTorch Version 2.8.0

Container Disk 100 GB

Cost $1.64 / hr

Important Metrics

• Latency

• Throughput

1/20/2016University of Stuttgart, IAS 11

Prefill: Time To First Token(TTFT)

Important Metrics: Latency

𝑇𝑇𝐹𝑇 =
𝐿 ∙ 𝑘𝐹𝐿𝑂𝑃𝑆 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

2

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 ∙ 𝜂𝑀𝐹𝑈
∙ 𝑠𝑖𝑛 +

𝐿 ∙ 4 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 ∙ 𝜂𝑀𝐹𝑈
∙ 𝑠𝑖𝑛

2 + 𝑐0

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑘𝐹𝐿𝑂𝑃𝑆 The per-token FLOPs coefficient. 26

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 Peak theoretical performance of the

hardware

312TFLOPS

𝜂𝑀𝐹𝑈 Model FLOPS Utilization 95.57%

𝑠𝑖𝑛 Input Sequence Length 513

𝑐0 Constant Overhead 14.83ms 𝑇𝑇𝐹𝑇𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 54.13 𝑚𝑠

𝑇𝑇𝐹𝑇𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 54.81 𝑚𝑠

𝐸rror = 1.24%

Definition: The amount of time between sending an

input prompt and receiving the first output token.

1/20/2016University of Stuttgart, IAS 12

Decode: Time Per Output Token(TPOT)

Important Metrics: Latency

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑏𝑝𝑎𝑟𝑎 Bytes per parameter, FP16 2

𝑏𝑘𝑣 Bytes per KV Cache element, FP16 2

𝑑𝑘𝑣 Total dimension of the K/V heads 1024

𝐵𝑊𝑝𝑒𝑎𝑘 Peak theoretical memory bandwidth 1935 GB/s

𝜂𝐵𝑊 Memory Bandwidth Utilization 57.95%

𝑠𝑐𝑡𝑥 Current context length 1025
𝑇𝑃𝑂𝑇𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 11.36 𝑚𝑠/𝑡𝑜𝑘𝑒𝑛

𝑇𝑃𝑂𝑇𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 16.16 𝑚𝑠/𝑡𝑜𝑘𝑒𝑛

𝐸rror = 30%

Definition: The average time required to generate each

output token after the first token.

𝑇𝑃𝑂𝑇 =
12 ∙ 𝐿 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

2 ∙ 𝑏𝑝𝑎𝑟𝑎

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊
+

2 ∙ 𝐿 ∙ 𝐵 ∙ 𝑑𝑘𝑣 ∙ 𝑏𝑘𝑣

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊
∙ 𝑠𝑐𝑡𝑥

1/20/2016University of Stuttgart, IAS 13

Tokens Per Second(TPS)

Important Metrics: Throughput

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑏𝑝𝑎𝑟𝑎 Bytes per parameter, FP16 2

𝑏𝑘𝑣 Bytes per KV Cache element, FP16 2

𝑑𝑘𝑣 Total dimension of the K/V heads 1024

𝐵𝑊𝑝𝑒𝑎𝑘 Peak theoretical memory bandwidth 1935 GB/s

𝜂𝐵𝑊 Memory Bandwidth Utilization 57.95%

𝑠𝑐𝑡𝑥 Current context length 1025

𝑇𝑃𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 81.6 𝑡𝑜𝑘𝑒𝑛𝑠/𝑠

𝑇𝑃𝑆𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 57.89 𝑡𝑜𝑘𝑒𝑛𝑠/𝑠

𝐸rror = 45%

Definition: The number of output tokens generated by

the model per second.

𝑇𝑃𝑆 =
1

𝑇𝑃𝑂𝑇
=

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊

12 ∙ 𝐿 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙
2 ∙ 𝑏𝑝𝑎𝑟𝑎 + 2 ∙ 𝐿 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙 ∙ 𝑏𝑘𝑣 ∙ 𝑠𝑐𝑡𝑥

Experimentation Setup

22/10/2025University of Stuttgart, IAS 15

Deployment and Measurement Workflow

Experimentation Setup

Input

Output

NVIDIA A100

Cloud GPU Provider

Inference Framework

LLM

Metrics Input

Monitor

Fitting Formula

(to predict the throughput

and latency)

Metrics Output

Monitor

Optimization methods

• KV Cache

• Chunk Prefill

Definition: KV Cache is a mechanism that stores previously computed Key and Value

tensors during decoding to reuse past attention, thereby reducing per-step

computation complexity and speeding up generation.

1/20/2016University of Stuttgart, IAS 17

KV Cache

Optimization Method 1

𝒪 𝐿2 ∙ 𝑑

𝒪 𝐿 ∙ 𝑑

𝐿

𝐿

𝐿

1

Symbol Description

Q Query

K Key

V Vaule

L Sequence length

d Head size

Computational Complexity

𝒪 𝐿2 ∙ 𝑑 𝒪 𝐿 ∙ 𝑑

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑
𝑉

𝐿

𝐿

𝐿

𝐿

𝑑
𝑑

𝑑

1

[10]

1/20/2016University of Stuttgart, IAS 18

Chunk Prefill

Optimization Method 2

Definition: Chunk Prefill is a technique that splits large input prompts into smaller chunks

and batches them together with decode requests to reduce latency and improve throughput.

Efficient Scheduling Computation Parallelization

Better GPU utilization

Parallel execution

[11] [12]

Test and evaluation

• Without / With KV Cache

22/10/2025University of Stuttgart, IAS 20

Prefill: Time To First Token Fitted Formula

Optimization Method 1: KV Cache

𝑇𝑇𝐹𝑇 = 𝛼1 ∙ 𝑠𝑖𝑛 + 𝛼2 ∙ 𝑠𝑖𝑛
2 + 𝑐0

With KV cache

𝑇𝑇𝐹𝑇𝑁𝑜𝐾𝑉 = 5.714 ∙ 10−2 ∙ 𝑠𝑖𝑛 + 1.481 ∙ 10−5 ∙ 𝑠𝑖𝑛
2 + 39.381

𝑅𝑁𝑜𝐾𝑉
2 = 0.9686

Without KV cache

𝑇𝑇𝐹𝑇𝐾𝑉 = 7.745 ∙ 10−2 ∙ 𝑠𝑖𝑛 + 3.98 ∙ 10−5 ∙ 𝑠𝑖𝑛
2 + 14.837

𝑅𝐾𝑉
2 = 0.9686

For Latency, Lower is Better!

Enabling KV Cache reduces the Time To First Token (TTFT) by approximately 25%–35%

22/10/2025University of Stuttgart, IAS 21

Tokens Per Second(TPS)

Optimization Method 1: KV Cache

For Throughput, Higher is Better!

.

Without

KV Cache
With KV

Cache

Speedup

Average

TPS

9.02

tokens/s

56.03

tokens/s

6.2×

𝑠𝑐𝑡𝑥>2900

tokens

2.84

tokens/s

49.86

tokens/s

17.6×

Conclusion: KV Cache improves generation throughput

by 500–1600%, significantly accelerating inferencing.

Test and evaluation

• Without / With Chunk Prefill

22/10/2025University of Stuttgart, IAS 23

Prefill: Time To First Token Fitted Formula

Optimization Method 2: Chunk Prefill

𝑇𝑇𝐹𝑇 = 𝛼1 ∙ 𝑠𝑖𝑛 + 𝛼2 ∙ 𝑠𝑖𝑛
2 + 𝑐0

With Chunk Prefill

𝑇𝑇𝐹𝑇𝑁𝑜𝐶ℎ𝑢𝑛𝑘 = 6.008 ∙ 10−3 ∙ 𝑠𝑖𝑛 + 1.7 ∙ 10−7 ∙ 𝑠𝑖𝑛
2 + 341.408

𝑅𝑁𝑜𝐶ℎ𝑢𝑛𝑘
2 = 0.980

Without Chunk Prefill

𝑇𝑇𝐹𝑇𝐶ℎ𝑢𝑛𝑘 = 5.435 ∙ 10−3 ∙ 𝑠𝑖𝑛 + 2 ∙ 10−8 ∙ 𝑠𝑖𝑛
2 + 341.06

𝑅𝐶ℎ𝑢𝑛𝑘
2 = 0.982

For Latency, Lower is Better!

Chunk Prefill reduces Time To First Token by 0.3–1% for small-batch inference.

22/10/2025University of Stuttgart, IAS 24

Tokens Per Second(TPS)

Optimization Method 2: Chunk Prefill

For Throughput, Higher is Better!

With Chunk Prefill improves throughput by about

1.5–2%, meaning higher TPS → faster token

generation during prefill.

Conclusion: Chunk Prefill marginally improve the LLM

inference performance

Conclusion and outlook

Conclusion

• KV Cache and Chunk Prefill effectively improve inference efficiency.

• System-level optimization is key for on-premise LLM deployment.

Outlook

• Further optimize resource scheduling and memory allocation for constrained environments.

• Develop adaptive inference pipelines to balance latency, throughput in real time.

22/10/2025University of Stuttgart, IAS 26

Conclusion and Outlook

e-mail

phone +49 (0) 711 685-

fax +49 (0) 711 685-

University of Stuttgart

Thank you!

Yuchen Cai

Institut of Industrial Automation and Software Engineering

st178192@stud.uni-stuttgart.de

Pfaffenwaldring 47, 70550 Stuttgart, Germany

Institut of Industrial Automation

and Software Engineering

References

[1] Shi, Luohe, et al. "Keep the cost down: A review on methods to optimize LLM's KV-cache consumption."

arXiv preprint arXiv:2407.18003 (2024).

[2] Agrawal, Amey, et al. "Sarathi: Efficient llm inference by piggybacking decodes with chunked prefills." arXiv

preprint arXiv:2308.16369 (2023).

[3] Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebr'on, F., & Sanghai, S.K. (2023). GQA: Training

Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. ArXiv, abs/2305.13245.

[4] Gong, Ruihao, et al. "A survey of low-bit large language models: Basics, systems, and algorithms." arXiv

preprint arXiv:2409.16694 (2024).

[5] Kurtić, Eldar, Elias Frantar, and Dan Alistarh. "Ziplm: Inference-aware structured pruning of language

models." Advances in Neural Information Processing Systems 36 (2023): 65597-65617.

[6] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in

neural information processing systems 35 (2022): 16344-16359.

[7] Kwon, Woosuk, et al. "Efficient memory management for large language model serving with

pagedattention." Proceedings of the 29th symposium on operating systems principles. 2023.

[8] S. Park, S. Jeon, C. Lee, S. Jeon, B.-S. Kim, and J. Lee, “A Survey on Inference Engines for Large

Language Models: Perspectives on Optimization and Efficiency,” arXiv preprint arXiv:2505.01658, May

2025.

[9] B. Bycroft, “LLM Visualization,” bbycroft.net, Aug. 03, 2025. [Online]. Available: https://bbycroft.net/llm.

References

[10] [1] U. Jamil, “PyTorch LLaMA Notes,” GitHub repository, Jun. 2024. [Online]. Available:

https://github.com/hkproj/pytorch-llama-notes.

[11] Clay Atlas, “KV Cache: A Caching Mechanism To Accelerate Transformer Generation,” Clay-Atlas.com,

Nov. 1, 2024. [Online]. Available: https://clay-atlas.com/us/blog/2024/11/01/en-transformer-kv-cache-

accelerate/

[12] A. Elmeleegy, N. Comly, and S. Chetlur, “Streamlining AI Inference Performance and Deployment with

NVIDIA TensorRT-LLM Chunked Prefill,” NVIDIA Developer Blog, Nov. 15, 2024. [Online]. Available:

https://developer.nvidia.com/blog/streamlining-ai-inference-performance-and-deployment-with-nvidia-

tensorrt-llm-chunked-prefill/

[13] Anyscale, “chunked prefill – Anyscale contribution to vLLM breaks prefill requests into multiple chunks and

batch them with decoding requests,” X, May 12, 2025. [Online]. Available:

https://x.com/anyscalecompute/status/1795485248563839074

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Background
	Slide 7: Background
	Slide 8: Basics
	Slide 9: Deployment of LLM
	Slide 10: Important Metrics
	Slide 11: Important Metrics: Latency
	Slide 12: Important Metrics: Latency
	Slide 13: Important Metrics: Throughput
	Slide 14: Experimentation Setup
	Slide 15: Experimentation Setup
	Slide 16: Optimization methods
	Slide 17: Optimization Method 1
	Slide 18: Optimization Method 2
	Slide 19: Test and evaluation
	Slide 20: Optimization Method 1: KV Cache
	Slide 21: Optimization Method 1: KV Cache
	Slide 22: Test and evaluation
	Slide 23: Optimization Method 2: Chunk Prefill
	Slide 24: Optimization Method 2: Chunk Prefill
	Slide 25: Conclusion and outlook
	Slide 26: Conclusion and Outlook
	Slide 27
	Slide 28: References
	Slide 29: References

