University of Stuttgart

Institute of Industrial Automation
and Software Engineering

Resource-Constrained Optimization __
for On-Premise Deployment of
Large Language Model Applications

Yuchen Cai

Maijor: Electromobility
' Supervisor: M.Sc. Yuchen Xia
y Examiner: Prof. Dr. Ing. Michael Weyrich
October 22, 2025

— vy = .
\4_4 r 3

Agenda

Introduction
Background

Important Metrics
Experimentation Setup
Optimization methods
Test and evaluation

Conclusion and outlook

Introduction

C?QIME‘tCI LLAMA @dEEDSEG"l{

Introduction &) ChatGPT ¥ Claude
The LLM Revolution & The Deployment Choice Genli % X Fid

Large Language Models (LLMs) are transforming industries — enabling automation,
decision support, and knowledge discovery.

Two main deployment approaches: 1. Cloud-Based
2. On-Premise

Requires local GPUs and servers

Latency Internet-dependent
Throughput Elastic / Scalable on-demand Limited by local hardware
Data Security Depends on provider’s policy Full control; no external data transfer

No local investment Requires local GPUs and servers

Infrastructure
Scalability Virtually unlimited Limited by GPU and VRAM
Customization Restricted by APIs Full model access and tuning

Cost High CAPEX, low OPEX Pay-as-you-go (high OPEX)

University of Stuttgart, IAS 22/10/2025 4

Introduction
Challenge and Optimization

The Core Challenge

? @ Latency Optimization ——
Al fm' Throughput /%/’ KV Cache

o Chunk Prefill

v

LLM on a server

University of Stuttgart, IAS 22/10/2025 5

Background

Background

Classification of Existing Optimization Methods

KV Caching [1]

Inference Chunk Prefill [2]

Group-Query Attention [3]

Quantization [4]
Model

Pruning [5]
Flash Attention[6]

System
Paged Attention [7]

University of Stuttgart, IAS

Avoids recomputation

Reduces prefill load

Faster decoding
Smaller model
Less compute

Speeds up attention,

saves memory

Dynamic cache
management

High VRAM
Adds scheduling cost

Slight accuracy loss
Accuracy loss
Retraining needed
Limited to supported GPUs

Complex implementation

22/10/2025

LLM Visualization

Basics e c BIAIB] B c
| '1
LLM Inference Process =‘ 0|

The inference process of Large Lan

e
Prefill Stage and the Decode Stage.
Prefill Phase
Prompt
e R —
in Germany ? 1 [I []
) Is Shtigal in Gemmany 7 I
: PS)
......................... TTET s ond
Time To First Token

__

[9] LLM Inference g,

[8] LLM Inference Process visualization

University of Stuttgart, IAS

22/10/2025 8

| GPU | NIVIDIAA100 80GB PCle

Deployment of LLM FP16 Tensor 312 TFLOPS
Memory 80GB HBM2e
Lt Memory Bandwidth 1935GB/s

Input Cloud Platform

NVIDIA A100 80GB PCle CUDA Version 12.8
0 Operating System Ubuntu 24.04 LTS
E PyTorch Version 28.0
1
i Container Disk 100 GB
& tLLM e
< .. ONMeta Cost $1.64 / hr
Cloud GPU Provider Model parameter size
Architecture Decoder-only Transformer
Attention Heads 32 (GQA enabled)
Hidden Size 4096
Context Length 8019
Output o
Precision FP16

University of Stuttgart, IAS 22/10/2025 9

Important Metrics

Latency

Throughput

Prefill Phase Decode Phase

Important Metrics: Latency m =R ﬁﬁjﬁﬁﬁ—

Prefill: Time To First Token(TTFT)

Definition: The amount of time between sending an
input prompt and receiving the first output token.

L Number of Transformer Layers 32
dmodel Hidden Size 4096
B Batch Size 1
krrLops The per-token FLOPs coefficient. 26
FLOPSyeqk Peak theoretical performance of the 312TFLOPS
hardware
NMmFU Model FLOPS Utilization 95.57%
Sin Input Sequence Length 513
Co Constant Overhead 14.83ms TTFTrheoretical = 54.13 ms
S— L-kppops - B - d2p 401 e L-4-B-dy,ge 2o TTFTexperimentar = 54.81ms
Sin T Co Error = 1.24%

FLOPSpeak *NMMFU i FLOPSpeak : T]MFU

University of Stuttgart, IAS 1/20/2016 11

Prefill Phase Decode Phase

e

Important Metrics: Latency T emmnm—y P

TTFT - TPOT & TPOT - i Token Per Second
Time To First Token Time Per Output Token i

Decode: Time Per Output Token(TPOT) f- S

Definition: The average time required to generate each
output token after the first token.

L Number of Transformer Layers 32
Amodel Hidden Size 4096
B Batch Size 1
bpara Bytes per parameter, FP16 2
by Bytes per KV Cache element, FP16 2
Ay Total dimension of the K/V heads 1024
BWpyeak Peak theoretical memory bandwidth 1935 GB/s
New Memory Bandwidth Utilization 57.95%
TPOTrheoreticar = 11.36 ms/token
Sctx Current context length 1025

TPOTgxperimentar = 16.16 ms/token
12- dmodel bpara n 2:L-B-dyy- by

BWhyeak * Naw BWhyeak * Naw " Setx Error = 30%

University of Stuttgart, IAS 1/20/2016 12

TPOT =

Prefill Phase Decode Phase

[=

T i TPOT A TPOT -

Important Metrics: Throughput

Prompt
gy W _ 3 (e
WIS BT D o e

¢ TTI

Output

Throughput (TPS)
Token Per Second

Tokens Per Second(TPS) |

Definition: The number of output tokens generated by
the model per second.

L Number of Transformer Layers 32
Amodel Hidden Size 4096
B Batch Size 1
bpara Bytes per parameter, FP16 2
by Bytes per KV Cache element, FP16 2
Ay Total dimension of the K/V heads 1024
BWpyeak Peak theoretical memory bandwidth 1935 GB/s
New Memory Bandwidth Utilization 57.95% TPS
Experimental
Sctx Current context length 1025

TPStheoreticar = 81.6 tokens/s
= 57.89 tokens/s

Error = 45%

B BWyeak * New
TPOT 12-L-d> bpara + 2+ LB - dmoger * by * Sctx

model °

TPS =

University of Stuttgart, IAS

1/20/2016 13

Experimentation Setup

Experimentation Setup
Deployment and Measurement Workflow

NVIDIA A100

Input

]
i
E LLM Metrics Input =
v / Monitor B =
f Inference Framework m Meta e ==
Llama 3 Fitting Formula
Uil (%) Mugging Face LLM (to predict the throughput
Cloud GPU Provider ————————) @ _ and latency)

Pod Summary

1x A100 PCle (20 GB VRAM Metr!cs Output
125 GB RAM = 16 vCPU Monitor
Total Disk: 200 GB

Pod Template

*4 Runpod Pytorch 2.8.0 &
‘ ’ unpod/pytorch:1.0.2-cLi1281-torch280-ubuntu2404 O utp ut

University of Stuttgart, IAS 22/10/2025 15

Optimization methods

KV Cache
Chunk Prefill

Optimization Method 1

KV Cache

Definition: KV Cache is a mechanism that stores previously computed Key and Value
tensors during decoding to reuse past attention, thereby reducing per-step

computation complexity and speeding up generation. Attention(Q,K,V) = Softmax (QKT> %

‘Without KV Cache‘ L / O(LZ : d) \/H
aT=l BlEeSE
o d * ‘ inn v Q Query
SOftmax ((seq_len, head_size) (head_size, seq_len) :L (seq_len, seq_len)) X -
’—headisize (seq_len, head _size) (seq_len, head_size) K Key
V Vaule
KV Cache
4 L Ly oL - d) L Sequence length
LQ ! KU :
1 - - d Head size
Softmax ((1, head_size) (head_size, seq_len) (1, seq_len)]) x V -
/ head size - Computational Complexity
[10] Key Cache Value Cache O(LZ . d) > O(L . d)

University of Stuttgart, IAS 1/20/2016 17

Optimization Method 2
Chunk Prefill

Definition: Chunk Prefill is a technique that splits large input prompts into smaller chunks
and batches them together with decode requests to reduce latency and improve throughput.

Efficient Scheduling Computation Parallelization
Parallel execution

W/0 TensorRT-LLM Chunked Prefill
Chunked Pref

Query 1, Query1,
FistToken) Complsted) i

[- | e - mu e - [N g L
8003808030080
! 1
o i1l
Th . I
Better GPU utilization] -
Ry L, 020090 e 1 i
. seal
=
S - 2088
1 1
et
-]
Crunk1 H i :g;zft "

W Query# WQuerys2 W Query#d

University of Stuttgart, IAS 1/20/2016 18

Test and evaluation

Without / With KV Cache

Optimization Method 1: KV Cache
Prefill: Time To First Token Fitted Formula

TTFT Comparison: With vs Without KV Cache

350
@ With KV Cache (Data)

= \Nith KV Fit (R2=0.998)

300

5]
u
=}

TTFT (ms)

TTFT = aq * sip + a5 'Sizn + ¢

Rl il e . Without KV cache
R% kv = 0.9686

With KV cache

TTFTyoxy = 5.714 - 1072 - 5, + 1.481 - 1075 - s2, + 39.381

=
v
=]

TTFTyy = 7.745-1072 - s;, +3.98- 107> - s, + 14.837

100

RZ, = 0.9686

0 500 1000 1500 2000 2500 3000
Input Length (tokens)

For Latency, Lower is Better!
Enabling KV Cache reduces the Time To First Token (TTFT) by approximately 25%—35%

University of Stuttgart, IAS 22/10/2025 20

Optimization Method 1: KV Cache

Tokens Per Second(TPS)

Generation Speed: With vs Without KV Cache

=o= No KV Cache
60 =@= With KV Cache

= 8 8 8

Token Per Second (tokens/s)

=
k=]

0 500 1000 1500 2000 2500
Context Length (tokens)

For Throughput, Higher is Better!

University of Stuttgart, IAS

3000

Without With KV Speedup
KV Cache Cache

Average 9.02 56.03
TPS tokens/s tokens/s
Seex>2900 2.84 49.86 17.6%

tokens tokens/s tokens/s

Conclusion: KV Cache improves generation throughput
by 500-1600%, significantly accelerating inferencing.

22/10/2025 21

Test and evaluation

Without / With Chunk Prefill

Optimization Method 2: Chunk Prefill

Prefill: Time To First Token Fitted Formula TTFT = &y - Sin + @z * SH + o
TTFT: Chunked (512) vs No Chunk (8192)
N Chunk (8192} Without Chunk Prefill

With Chunk (512)
= No Chunk Fit (R*=0.980)
m YWith Chunk FIt [R*=0.982)

3575

TTFTyochune = 6-008 - 1073 - Sjy + 1.7 - 1077 - s2, + 341.408

355.0

2
RNoChunk = 0.980

A525

Wi
W
-3

=

With Chunk Prefill

TTFT (ms)

347.5

TTFTcpynk = 54351073 -5, +2-1078 . 52 + 341.06

345.0

RZ,mi = 0.982

342.5

a 500 10040 1500 2000 2500 3000
Input Length (tokens)

For Latency, Lower is Better!
Chunk Prefill reduces Time To First Token by 0.3-1% for small-batch inference.

University of Stuttgart, IAS 22/10/2025 23

Optimization Method 2: Chunk Prefill
Tokens Per Second(TPS)

Token Per Second {(tokens/s)

aB e Mo Chunk (192}
@ With Chunk (512)

For Throughput, Higher is Better!

With Chunk Prefill improves throughput by about
1.5-2%, meaning higher TPS — faster token
generation during prefill.

o il
=] -

Token Per Second (tokens/s)
oa
(5

84

0 S0 1041 1500 20000 2500 30040
Context Length (tokens)

Conclusion: Chunk Prefill marginally improve the LLM
inference performance

University of Stuttgart, IAS 22/10/2025 24

Conclusion and outlook

Conclusion and Outlook

Conclusion
« KV Cache and Chunk Prefill effectively improve inference efficiency.

+ System-level optimization is key for on-premise LLM deployment.

Outlook

 Further optimize resource scheduling and memory allocation for constrained environments.

» Develop adaptive inference pipelines to balance latency, throughput in real time.

University of Stuttgart, IAS 22/10/2025 26

: University of Stuttgart
Institut of Industrial Automation
and Software Engineering

Thank you!

Yuchen Cai

0 \
6

e-mail st178192@stud.uni-stuttgart.de
phone +49 (0) 711 685-
fax +49 (0) 711 685-

| el

University of Stuttgart
Institut of Industrial Automation and Software Engineering

Pfaffenwaldring 47, 70550 Stuttgart, Germany

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

Shi, Luohe, et al. "Keep the cost down: A review on methods to optimize LLM's KV-cache consumption.”
arXiv preprint arXiv:2407.18003 (2024).

Agrawal, Amey, et al. "Sarathi: Efficient llm inference by piggybacking decodes with chunked prefills." arXiv
preprint arXiv:2308.16369 (2023).

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebr'on, F., & Sanghai, S.K. (2023). GQA: Training
Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. ArXiv, abs/2305.13245.

Gong, Ruihao, et al. "A survey of low-bit large language models: Basics, systems, and algorithms." arXiv
preprint arXiv:2409.16694 (2024).

Kurti¢, Eldar, Elias Frantar, and Dan Alistarh. "Ziplm: Inference-aware structured pruning of language
models." Advances in Neural Information Processing Systems 36 (2023): 65597-65617.

Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in
neural information processing systems 35 (2022): 16344-16359.

Kwon, Woosuk, et al. "Efficent memory management for large language model serving with
pagedattention." Proceedings of the 29th symposium on operating systems principles. 2023.

S. Park, S. Jeon, C. Lee, S. Jeon, B.-S. Kim, and J. Lee, “A Survey on Inference Engines for Large
Language Models: Perspectives on Optimization and Efficiency,” arXiv preprint arXiv:2505.01658, May
2025.

B. Bycroft, “LLM Visualization,” bbycroft.net, Aug. 03, 2025. [Online]. Available: https://bbycroft.net/lim.

References

[10] [11 U. Jamil, “PyTorch LLaMA Notes,” GitHub repository, Jun. 2024. [Online]. Available:
https://github.com/hkproj/pytorch-llama-notes.

[11] Clay Atlas, “KV Cache: A Caching Mechanism To Accelerate Transformer Generation,” Clay-Atlas.com,
Nov. 1, 2024. [Online]. Available: https://clay-atlas.com/us/blog/2024/11/01/en-transformer-kv-cache-
accelerate/

[12] A. Elmeleegy, N. Comly, and S. Chetlur, “Streamlining Al Inference Performance and Deployment with
NVIDIA TensorRT-LLM Chunked Prefill,” NVIDIA Developer Blog, Nov. 15, 2024. [Online]. Available:
https://developer.nvidia.com/blog/streamlining-ai-inference-performance-and-deployment-with-nvidia-
tensorrt-lim-chunked-prefill/

[13] Anyscale, “chunked prefill — Anyscale contribution to vLLM breaks prefill requests into multiple chunks and
batch them with decoding requests,” X, May 12, 2025. [Online]. Available:
https://x.com/anyscalecompute/status/1795485248563839074

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Background
	Slide 7: Background
	Slide 8: Basics
	Slide 9: Deployment of LLM
	Slide 10: Important Metrics
	Slide 11: Important Metrics: Latency
	Slide 12: Important Metrics: Latency
	Slide 13: Important Metrics: Throughput
	Slide 14: Experimentation Setup
	Slide 15: Experimentation Setup
	Slide 16: Optimization methods
	Slide 17: Optimization Method 1
	Slide 18: Optimization Method 2
	Slide 19: Test and evaluation
	Slide 20: Optimization Method 1: KV Cache
	Slide 21: Optimization Method 1: KV Cache
	Slide 22: Test and evaluation
	Slide 23: Optimization Method 2: Chunk Prefill
	Slide 24: Optimization Method 2: Chunk Prefill
	Slide 25: Conclusion and outlook
	Slide 26: Conclusion and Outlook
	Slide 27
	Slide 28: References
	Slide 29: References

