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Introduction



Large Language Models (LLMs) are transforming industries — enabling automation, 

decision support, and knowledge discovery.

Two main deployment approaches:  1. Cloud-Based  

2. On-Premise 
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The LLM Revolution & The Deployment Choice

Introduction

Aspect Cloud-Based On-Premise

Latency Internet-dependent Requires local GPUs and servers

Throughput Elastic / Scalable on-demand Limited by local hardware

Data Security Depends on provider’s policy Full control; no external data transfer

Infrastructure No local investment Requires local GPUs and servers

Scalability Virtually unlimited Limited by GPU and VRAM

Customization Restricted by APIs Full model access and tuning

Cost High CAPEX, low OPEX Pay-as-you-go (high OPEX)
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Challenge and Optimization

Introduction

KV Cache

Latency

Throughput

Chunk Prefill
LLM on a server

The Core Challenge



Background
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Classification of Existing Optimization Methods

Background

Level Technique Advantage Disadvantage

Inference

KV Caching [1] Avoids recomputation High VRAM

Chunk Prefill [2] Reduces prefill load Adds scheduling cost

Group-Query Attention [3] Faster decoding Slight accuracy loss

Model

Quantization [4] Smaller model Accuracy loss

Pruning [5] Less compute Retraining needed

System

Flash Attention[6] Speeds up attention, 

saves memory

Limited to supported GPUs

Paged Attention [7] Dynamic cache 

management

Complex implementation



The inference process of Large Language Models (LLMs) is divided into two stages: the 

Prefill Stage and the Decode Stage.
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LLM Inference Process

Basics

[8] LLM Inference Process visualization

[9] LLM Inference Phases and Key Latency Metrics
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Deployment of LLM

Input

Output

NVIDIA  A100 80GB PCIe 

Cloud GPU Provider

Inference Framework

LLM

GPU NIVIDIA A100 80GB PCIe

FP16 Tensor 312 TFLOPS

Memory 80GB HBM2e

Memory Bandwidth 1935GB/s

Model Meta Llama3-8B

Model parameter size 8B

Architecture Decoder-only Transformer

Attention Heads 32 (GQA enabled)

Hidden Size 4096

Context Length 8019

Precision FP16

Cloud Platform RunPod

CUDA Version 12.8

Operating System Ubuntu 24.04 LTS

PyTorch Version 2.8.0

Container Disk 100 GB

Cost $1.64 / hr



Important Metrics

• Latency

• Throughput
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Prefill: Time To First Token(TTFT)

Important Metrics: Latency

𝑇𝑇𝐹𝑇 =
𝐿 ∙ 𝑘𝐹𝐿𝑂𝑃𝑆 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

2

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 ∙ 𝜂𝑀𝐹𝑈
∙ 𝑠𝑖𝑛 +

𝐿 ∙ 4 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 ∙ 𝜂𝑀𝐹𝑈
∙ 𝑠𝑖𝑛

2 + 𝑐0

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑘𝐹𝐿𝑂𝑃𝑆 The per-token FLOPs coefficient. 26

𝐹𝐿𝑂𝑃𝑆𝑝𝑒𝑎𝑘 Peak theoretical performance of the 

hardware

312TFLOPS

𝜂𝑀𝐹𝑈 Model FLOPS Utilization 95.57%

𝑠𝑖𝑛 Input Sequence Length 513

𝑐0 Constant Overhead 14.83ms 𝑇𝑇𝐹𝑇𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 =  54.13 𝑚𝑠

𝑇𝑇𝐹𝑇𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 54.81 𝑚𝑠

𝐸rror = 1.24%

Definition: The amount of time between sending an 

input prompt and receiving the first output token.
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Decode: Time Per Output Token(TPOT)

Important Metrics: Latency

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑏𝑝𝑎𝑟𝑎 Bytes per parameter, FP16 2

𝑏𝑘𝑣 Bytes per KV Cache element, FP16 2

𝑑𝑘𝑣 Total dimension of the K/V heads 1024

𝐵𝑊𝑝𝑒𝑎𝑘 Peak theoretical memory bandwidth 1935 GB/s

𝜂𝐵𝑊 Memory Bandwidth Utilization 57.95%

𝑠𝑐𝑡𝑥 Current context length 1025
𝑇𝑃𝑂𝑇𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 11.36 𝑚𝑠/𝑡𝑜𝑘𝑒𝑛

𝑇𝑃𝑂𝑇𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 16.16 𝑚𝑠/𝑡𝑜𝑘𝑒𝑛

𝐸rror = 30%

Definition: The average time required to generate each 

output token after the first token.

𝑇𝑃𝑂𝑇 =
12 ∙ 𝐿 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙

2 ∙ 𝑏𝑝𝑎𝑟𝑎

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊
+

2 ∙ 𝐿 ∙ 𝐵 ∙ 𝑑𝑘𝑣 ∙ 𝑏𝑘𝑣

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊
∙ 𝑠𝑐𝑡𝑥
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Tokens Per Second(TPS)

Important Metrics: Throughput

Symbol Description Value

L Number of Transformer Layers 32

𝑑𝑚𝑜𝑑𝑒𝑙 Hidden Size 4096

B Batch Size 1

𝑏𝑝𝑎𝑟𝑎 Bytes per parameter, FP16 2

𝑏𝑘𝑣 Bytes per KV Cache element, FP16 2

𝑑𝑘𝑣 Total dimension of the K/V heads 1024

𝐵𝑊𝑝𝑒𝑎𝑘 Peak theoretical memory bandwidth 1935 GB/s

𝜂𝐵𝑊 Memory Bandwidth Utilization 57.95%

𝑠𝑐𝑡𝑥 Current context length 1025

𝑇𝑃𝑆𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 81.6 𝑡𝑜𝑘𝑒𝑛𝑠/𝑠

𝑇𝑃𝑆𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 = 57.89 𝑡𝑜𝑘𝑒𝑛𝑠/𝑠

𝐸rror = 45%

Definition: The number of output tokens generated by 

the model per second.

𝑇𝑃𝑆 =
1

𝑇𝑃𝑂𝑇
=

𝐵𝑊𝑝𝑒𝑎𝑘 ∙ 𝜂𝐵𝑊

12 ∙ 𝐿 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙
2 ∙ 𝑏𝑝𝑎𝑟𝑎 + 2 ∙ 𝐿 ∙ 𝐵 ∙ 𝑑𝑚𝑜𝑑𝑒𝑙 ∙ 𝑏𝑘𝑣 ∙ 𝑠𝑐𝑡𝑥



Experimentation Setup
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Deployment and Measurement Workflow

Experimentation Setup

Input

Output

NVIDIA  A100 

Cloud GPU Provider

Inference Framework

LLM

Metrics Input 

Monitor

Fitting Formula        

(to predict the throughput 

and latency)

Metrics Output 

Monitor



Optimization methods

• KV Cache

• Chunk Prefill



Definition: KV Cache is a mechanism that stores previously computed Key and Value 

tensors during decoding to reuse past attention, thereby reducing per-step 

computation complexity and speeding up generation. 
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KV Cache

Optimization Method 1

𝒪 𝐿2 ∙ 𝑑

𝒪 𝐿 ∙ 𝑑

𝐿

𝐿

𝐿

1

Symbol Description

Q Query

K Key

V Vaule

L Sequence length

d Head size

Computational Complexity

𝒪 𝐿2 ∙ 𝑑 𝒪 𝐿 ∙ 𝑑

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑
𝑉

𝐿

𝐿

𝐿

𝐿

𝑑
𝑑

𝑑

1

[10] 
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Chunk Prefill

Optimization Method 2

Definition: Chunk Prefill is a technique that splits large input prompts into smaller chunks 

and batches them together with decode requests to reduce latency and improve throughput.

Efficient Scheduling Computation Parallelization

Better GPU utilization

Parallel execution

[11] [12]



Test and evaluation

• Without / With KV Cache
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Prefill: Time To First Token Fitted Formula

Optimization Method 1: KV Cache

𝑇𝑇𝐹𝑇 = 𝛼1 ∙ 𝑠𝑖𝑛 + 𝛼2 ∙ 𝑠𝑖𝑛
2 + 𝑐0

With KV cache 

𝑇𝑇𝐹𝑇𝑁𝑜𝐾𝑉 = 5.714 ∙ 10−2 ∙ 𝑠𝑖𝑛 + 1.481 ∙ 10−5 ∙ 𝑠𝑖𝑛
2 + 39.381

𝑅𝑁𝑜𝐾𝑉
2 = 0.9686

Without KV cache 

𝑇𝑇𝐹𝑇𝐾𝑉 = 7.745 ∙ 10−2 ∙ 𝑠𝑖𝑛 + 3.98 ∙ 10−5 ∙ 𝑠𝑖𝑛
2 + 14.837

𝑅𝐾𝑉
2 = 0.9686

For Latency, Lower is Better!

Enabling KV Cache reduces the Time To First Token (TTFT) by approximately 25%–35%
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Tokens Per Second(TPS)

Optimization Method 1: KV Cache

For Throughput, Higher is Better!

.

Without 

KV Cache
With KV 

Cache

Speedup

Average 

TPS

9.02 

tokens/s

56.03 

tokens/s

6.2×

𝑠𝑐𝑡𝑥>2900 

tokens

2.84 

tokens/s

49.86 

tokens/s

17.6×

Conclusion: KV Cache improves generation throughput 

by 500–1600%, significantly accelerating inferencing.



Test and evaluation

• Without / With Chunk Prefill
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Prefill: Time To First Token Fitted Formula

Optimization Method 2: Chunk Prefill

𝑇𝑇𝐹𝑇 = 𝛼1 ∙ 𝑠𝑖𝑛 + 𝛼2 ∙ 𝑠𝑖𝑛
2 + 𝑐0

With Chunk Prefill 

𝑇𝑇𝐹𝑇𝑁𝑜𝐶ℎ𝑢𝑛𝑘 = 6.008 ∙ 10−3 ∙ 𝑠𝑖𝑛 + 1.7 ∙ 10−7 ∙ 𝑠𝑖𝑛
2 + 341.408

𝑅𝑁𝑜𝐶ℎ𝑢𝑛𝑘
2 = 0.980

Without Chunk Prefill 

𝑇𝑇𝐹𝑇𝐶ℎ𝑢𝑛𝑘 = 5.435 ∙ 10−3 ∙ 𝑠𝑖𝑛 + 2 ∙ 10−8 ∙ 𝑠𝑖𝑛
2 + 341.06

𝑅𝐶ℎ𝑢𝑛𝑘
2 = 0.982

For Latency, Lower is Better! 

Chunk Prefill reduces Time To First Token by 0.3–1% for small-batch inference.
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Tokens Per Second(TPS)

Optimization Method 2: Chunk Prefill

For Throughput, Higher is Better!

With Chunk Prefill improves throughput by about 

1.5–2%, meaning higher TPS → faster token 

generation during prefill.

Conclusion: Chunk Prefill marginally improve the LLM 

inference performance



Conclusion and outlook



Conclusion

• KV Cache and Chunk Prefill effectively improve inference efficiency.

• System-level optimization is key for on-premise LLM deployment.

Outlook

• Further optimize resource scheduling and memory allocation for constrained environments.

• Develop adaptive inference pipelines to balance latency, throughput in real time.
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Conclusion and Outlook
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