1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
%{
** Copyright (C) 2021 The Qt Company Ltd.
** SPDX-License-Identifier: LicenseRef-Qt-Commercial OR GPL-3.0-only WITH Qt-GPL-exception-1.0
%}
% Create mapping matrixes to convert ambisonic to different speaker layouts supported in Qt Multimedia
%
% This uses the ADT octave framework from https://bitbucket.org/ambidecodertoolbox/adt/src/master/
% to generate conversion matrixes between ambisonic formats and various speaker configurations
%
% We're generating two band conversion matrices with a cutoff frequency of 380 Herz. Filtering low
% and high frequencies differently is important to get a decent spatial reproduction. For details
% see the "Is my decoder Ambisonic?" paper (https://ambisonics.dreamhosters.com/BLaH3.pdf)
%
function adt_generate_qt()
% assume speakers are 2 meters from listener. This should avoid near-field
% effects and should work for most room setups
radius = 2;
[outfile,msg] = fopen("qambisonicdecoderdata_p.h",'w');
fprintf(outfile, "// Copyright (C) 2016 The Qt Company Ltd.\n");
fprintf(outfile, "//SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only\n");
fprintf(outfile, "#ifndef QAMBISONICDECODERDATA_P_H\n");
fprintf(outfile, "#define QAMBISONICDECODERDATA_P_H\n\n");
fprintf(outfile, "#include <qtspatialaudioglobal_p.h>\n\n");
fprintf(outfile, "// W A R N I N G\n");
fprintf(outfile, "// -------------\n");
fprintf(outfile, "//\n");
fprintf(outfile, "// This file is not part of the Qt API. It exists purely as an\n");
fprintf(outfile, "// implementation detail. This header file may change from version to\n");
fprintf(outfile, "// version without notice, or even be removed.\n");
fprintf(outfile, "//\n");
fprintf(outfile, "// We mean it.\n");
fprintf(outfile, "//\n\n");
fprintf(outfile, "// This file is generated by the matlab/octave file adt_generate_qt.m\n");
fprintf(outfile, "// using the Ambisonic Decoder Toolbox (https://bitbucket.org/ambidecodertoolbox/adt/src/master/)\n");
fprintf(outfile, "\n\n");
fprintf(outfile, "QT_BEGIN_NAMESPACE\n\n");
% cover top/bottom for surround
imag_speakers = [0,0,radius; 0,0,-radius];
% https://www.dolby.com/us/en/guide/surround-sound-speaker-setup/5-1-setup.html
% Dolby 5.1 -- F: 22-30, S: 110-120, C in same plane as F
S = ambi_spkr_array(...
'5dot0', ...
'AER', 'DDM', ...
'L', [ 30, 0, radius], ...
'R', [ -30, 0, radius], ...
'C', [ 0, 0, radius], ...
'Ls', [ 110, 0, radius], ...
'Rs', [-110, 0, radius] ...
);
createDecoders(S, imag_speakers, outfile);
S.lfeRow = 4;
S.name = "5dot1";
createDecoders(S, imag_speakers, outfile);
% https://www.dolby.com/us/en/guide/surround-sound-speaker-setup/7-1-setup.html
% Dolby 7.1 F: 22-30, S: 90-110, B: 135-150
S = ambi_spkr_array(...
... % array name
'7dot0', ...
... % coordinate codes, unit codes
... % Azimuth, Elevation, Radius; Degrees, Degrees, Meters
'AER', 'DDM', ...
... % speaker name, [azimuth, elevation, radius]
'L', [ 30, 0, radius], ...
'R', [ -30, 0, radius], ...
'C', [ 0, 0, radius], ...
'Ls', [ 90, 0, radius], ...
'Rs', [ -90, 0, radius], ...
'Lb', [ 150, 0, radius], ...
'Rb', [-150, 0, radius] ...
);
createDecoders(S, imag_speakers, outfile);
S.lfeRow = 4;
S.name = "7dot1";
createDecoders(S, imag_speakers, outfile);
fprintf(outfile, "QT_END_NAMESPACE\n\n");
fprintf(outfile, "#endif\n\n");
fclose(outfile);
end
% remove rounding errors
function m = trimMatrix(m)
for i = 1:rows(m)
for j = 1:columns(m)
if (abs(m(i, j)) < 1e-4)
m(i, j) = 0;
endif
endfor
endfor
end
function writeLFERow(outfile, m, suffix)
if (strcmp(suffix, 'hf'))
fprintf(outfile, "0.0f, "); % no need for High frequency data on the LFE channel
else
fprintf(outfile, "0.5f, ");
endif
for i = 2:columns(m)
fprintf(outfile, "0.0f, ");
endfor
fprintf(outfile, "// LFE\n");
end
function [n, m] = getnm(l)
% Computes spherical harmonic degree and order from Ambisonic Channel Number.
n = floor(sqrt(l));
m = l-n.^2-n;
end
function channels = normalizeSN3D(channels)
for i = 1:columns(channels)
[n, m] = getnm(i-1);
if (m == 0)
factor = 1;
else
factor = sqrt(2 * factorial(n - abs(m)) / (factorial(n + abs(m))));
endif
% There's an adjustment factor of 1.5 here, to match the volumes generated by the matrices
% here with what we get from a simple stereo decoding. The factor is heuristically determined
channels(i) *= factor*1.5;
endfor
end
function writeMatrix(outfile, order, S, M, suffix)
m = trimMatrix(M);
hasLFE = isfield(S, "lfeRow");
r = rows(m);
c = columns(m);
if (hasLFE)
r = r + 1;
endif
fprintf(outfile, "// Decoder matrix for %s, ambisonic order %d\n", S.name, order);
fprintf(outfile, "static constexpr float decoderMatrix_%s_%d_%s[%d*%d] = {\n", S.name, order, suffix, r, c);
for i = 1:rows(S.id)
channels = normalizeSN3D(m(i, :))
fprintf(outfile, "%ff, ", channels);
fprintf(outfile, "// %s\n", S.id(i, 1){1});
if (hasLFE && S.lfeRow == i + 1)
writeLFERow(outfile, m, suffix);
endif
endfor
fprintf(outfile, "};\n\n");
end
function createOneDecoder(S, imag_speakers, outfile, order)
ambi_order = ambi_channel_definitions_convention(order, 'ambix2011')
[D,S,M,C] = ambi_run_allrad(S, ambi_order, imag_speakers, [S.name '_' int2str(order)], false, "amb", 1, 3);
writeMatrix(outfile, order, S, M.lf, "lf");
m = ambi_apply_gamma(M.hf, D.hf_gains, C);
writeMatrix(outfile, order, S, m, "hf");
end
function createDecoders(S, imag_speakers, outfile)
for order = [1:3]
createOneDecoder(S, imag_speakers, outfile, order)
endfor
end
|