1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
|
/*
* Copyright (C) 2011, 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef WTFDominators_h
#define WTFDominators_h
#include <wtf/FastBitVector.h>
#include <wtf/GraphNodeWorklist.h>
namespace WTF {
// This is a utility for finding the dominators of a graph. Dominators are almost universally used
// for control flow graph analysis, so this code will refer to the graph's "nodes" as "blocks". In
// that regard this code is kind of specialized for the various JSC compilers, but you could use it
// for non-compiler things if you are OK with referring to your "nodes" as "blocks".
template<typename Graph>
class Dominators {
public:
Dominators(Graph& graph, bool selfCheck = false)
: m_graph(graph)
{
LengauerTarjan lengauerTarjan(m_graph);
lengauerTarjan.compute();
m_data = m_graph.template newMap<BlockData>();
// From here we want to build a spanning tree with both upward and downward links and we want
// to do a search over this tree to compute pre and post numbers that can be used for dominance
// tests.
for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) {
typename Graph::Node block = m_graph.node(blockIndex);
if (!block)
continue;
typename Graph::Node idomBlock = lengauerTarjan.immediateDominator(block);
m_data[block].idomParent = idomBlock;
if (idomBlock)
m_data[idomBlock].idomKids.append(block);
}
unsigned nextPreNumber = 0;
unsigned nextPostNumber = 0;
// Plain stack-based worklist because we are guaranteed to see each block exactly once anyway.
Vector<GraphNodeWithOrder<typename Graph::Node>> worklist;
worklist.append(GraphNodeWithOrder<typename Graph::Node>(m_graph.node(0), GraphVisitOrder::Pre));
while (!worklist.isEmpty()) {
GraphNodeWithOrder<typename Graph::Node> item = worklist.takeLast();
switch (item.order) {
case GraphVisitOrder::Pre:
m_data[item.node].preNumber = nextPreNumber++;
worklist.append(GraphNodeWithOrder<typename Graph::Node>(item.node, GraphVisitOrder::Post));
for (typename Graph::Node kid : m_data[item.node].idomKids)
worklist.append(GraphNodeWithOrder<typename Graph::Node>(kid, GraphVisitOrder::Pre));
break;
case GraphVisitOrder::Post:
m_data[item.node].postNumber = nextPostNumber++;
break;
}
}
if (selfCheck) {
// Check our dominator calculation:
// 1) Check that our range-based ancestry test is the same as a naive ancestry test.
// 2) Check that our notion of who dominates whom is identical to a naive (not
// Lengauer-Tarjan) dominator calculation.
ValidationContext context(m_graph, *this);
for (unsigned fromBlockIndex = m_graph.numNodes(); fromBlockIndex--;) {
typename Graph::Node fromBlock = m_graph.node(fromBlockIndex);
if (!fromBlock || m_data[fromBlock].preNumber == UINT_MAX)
continue;
for (unsigned toBlockIndex = m_graph.numNodes(); toBlockIndex--;) {
typename Graph::Node toBlock = m_graph.node(toBlockIndex);
if (!toBlock || m_data[toBlock].preNumber == UINT_MAX)
continue;
if (dominates(fromBlock, toBlock) != naiveDominates(fromBlock, toBlock))
context.reportError(fromBlock, toBlock, "Range-based domination check is broken");
if (dominates(fromBlock, toBlock) != context.naiveDominators.dominates(fromBlock, toBlock))
context.reportError(fromBlock, toBlock, "Lengauer-Tarjan domination is broken");
}
}
context.handleErrors();
}
}
bool strictlyDominates(typename Graph::Node from, typename Graph::Node to) const
{
return m_data[to].preNumber > m_data[from].preNumber
&& m_data[to].postNumber < m_data[from].postNumber;
}
bool dominates(typename Graph::Node from, typename Graph::Node to) const
{
return from == to || strictlyDominates(from, to);
}
// Returns the immediate dominator of this block. Returns null for the root block.
typename Graph::Node idom(typename Graph::Node block) const
{
return m_data[block].idomParent;
}
template<typename Functor>
void forAllStrictDominatorsOf(typename Graph::Node to, const Functor& functor) const
{
for (typename Graph::Node block = m_data[to].idomParent; block; block = m_data[block].idomParent)
functor(block);
}
template<typename Functor>
void forAllDominatorsOf(typename Graph::Node to, const Functor& functor) const
{
for (typename Graph::Node block = to; block; block = m_data[block].idomParent)
functor(block);
}
template<typename Functor>
void forAllBlocksStrictlyDominatedBy(typename Graph::Node from, const Functor& functor) const
{
Vector<typename Graph::Node, 16> worklist;
worklist.appendVector(m_data[from].idomKids);
while (!worklist.isEmpty()) {
typename Graph::Node block = worklist.takeLast();
functor(block);
worklist.appendVector(m_data[block].idomKids);
}
}
template<typename Functor>
void forAllBlocksDominatedBy(typename Graph::Node from, const Functor& functor) const
{
Vector<typename Graph::Node, 16> worklist;
worklist.append(from);
while (!worklist.isEmpty()) {
typename Graph::Node block = worklist.takeLast();
functor(block);
worklist.appendVector(m_data[block].idomKids);
}
}
typename Graph::Set strictDominatorsOf(typename Graph::Node to) const
{
typename Graph::Set result;
forAllStrictDominatorsOf(
to,
[&] (typename Graph::Node node) {
result.add(node);
});
return result;
}
typename Graph::Set dominatorsOf(typename Graph::Node to) const
{
typename Graph::Set result;
forAllDominatorsOf(
to,
[&] (typename Graph::Node node) {
result.add(node);
});
return result;
}
typename Graph::Set blocksStrictlyDominatedBy(typename Graph::Node from) const
{
typename Graph::Set result;
forAllBlocksStrictlyDominatedBy(
from,
[&] (typename Graph::Node node) {
result.add(node);
});
return result;
}
typename Graph::Set blocksDominatedBy(typename Graph::Node from) const
{
typename Graph::Set result;
forAllBlocksDominatedBy(
from,
[&] (typename Graph::Node node) {
result.add(node);
});
return result;
}
template<typename Functor>
void forAllBlocksInDominanceFrontierOf(
typename Graph::Node from, const Functor& functor) const
{
typename Graph::Set set;
forAllBlocksInDominanceFrontierOfImpl(
from,
[&] (typename Graph::Node block) {
if (set.add(block))
functor(block);
});
}
typename Graph::Set dominanceFrontierOf(typename Graph::Node from) const
{
typename Graph::Set result;
forAllBlocksInDominanceFrontierOf(
from,
[&] (typename Graph::Node node) {
result.add(node);
});
return result;
}
template<typename Functor>
void forAllBlocksInIteratedDominanceFrontierOf(const typename Graph::List& from, const Functor& functor)
{
forAllBlocksInPrunedIteratedDominanceFrontierOf(
from,
[&] (typename Graph::Node block) -> bool {
functor(block);
return true;
});
}
// This is a close relative of forAllBlocksInIteratedDominanceFrontierOf(), which allows the
// given functor to return false to indicate that we don't wish to consider the given block.
// Useful for computing pruned SSA form.
template<typename Functor>
void forAllBlocksInPrunedIteratedDominanceFrontierOf(
const typename Graph::List& from, const Functor& functor)
{
typename Graph::Set set;
forAllBlocksInIteratedDominanceFrontierOfImpl(
from,
[&] (typename Graph::Node block) -> bool {
if (!set.add(block))
return false;
return functor(block);
});
}
typename Graph::Set iteratedDominanceFrontierOf(const typename Graph::List& from) const
{
typename Graph::Set result;
forAllBlocksInIteratedDominanceFrontierOfImpl(
from,
[&] (typename Graph::Node node) -> bool {
return result.add(node);
});
return result;
}
void dump(PrintStream& out) const
{
for (unsigned blockIndex = 0; blockIndex < m_data.size(); ++blockIndex) {
if (m_data[blockIndex].preNumber == UINT_MAX)
continue;
out.print(" Block #", blockIndex, ": idom = ", pointerDump(m_data[blockIndex].idomParent), ", idomKids = [");
CommaPrinter comma;
for (unsigned i = 0; i < m_data[blockIndex].idomKids.size(); ++i)
out.print(comma, *m_data[blockIndex].idomKids[i]);
out.print("], pre/post = ", m_data[blockIndex].preNumber, "/", m_data[blockIndex].postNumber, "\n");
}
}
private:
// This implements Lengauer and Tarjan's "A Fast Algorithm for Finding Dominators in a Flowgraph"
// (TOPLAS 1979). It uses the "simple" implementation of LINK and EVAL, which yields an O(n log n)
// solution. The full paper is linked below; this code attempts to closely follow the algorithm as
// it is presented in the paper; in particular sections 3 and 4 as well as appendix B.
// https://www.cs.princeton.edu/courses/archive/fall03/cs528/handouts/a%20fast%20algorithm%20for%20finding.pdf
//
// This code is very subtle. The Lengauer-Tarjan algorithm is incredibly deep to begin with. The
// goal of this code is to follow the code in the paper, however our implementation must deviate
// from the paper when it comes to recursion. The authors had used recursion to implement DFS, and
// also to implement the "simple" EVAL. We convert both of those into worklist-based solutions.
// Finally, once the algorithm gives us immediate dominators, we implement dominance tests by
// walking the dominator tree and computing pre and post numbers. We then use the range inclusion
// check trick that was first discovered by Paul F. Dietz in 1982 in "Maintaining order in a linked
// list" (see http://dl.acm.org/citation.cfm?id=802184).
class LengauerTarjan {
public:
LengauerTarjan(Graph& graph)
: m_graph(graph)
, m_data(graph.template newMap<BlockData>())
{
for (unsigned blockIndex = m_graph.numNodes(); blockIndex--;) {
typename Graph::Node block = m_graph.node(blockIndex);
if (!block)
continue;
m_data[block].label = block;
}
}
void compute()
{
computeDepthFirstPreNumbering(); // Step 1.
computeSemiDominatorsAndImplicitImmediateDominators(); // Steps 2 and 3.
computeExplicitImmediateDominators(); // Step 4.
}
typename Graph::Node immediateDominator(typename Graph::Node block)
{
return m_data[block].dom;
}
private:
void computeDepthFirstPreNumbering()
{
// Use a block worklist that also tracks the index inside the successor list. This is
// necessary for ensuring that we don't attempt to visit a successor until the previous
// successors that we had visited are fully processed. This ends up being revealed in the
// output of this method because the first time we see an edge to a block, we set the
// block's parent. So, if we have:
//
// A -> B
// A -> C
// B -> C
//
// And we're processing A, then we want to ensure that if we see A->B first (and hence set
// B's prenumber before we set C's) then we also end up setting C's parent to B by virtue
// of not noticing A->C until we're done processing B.
ExtendedGraphNodeWorklist<typename Graph::Node, unsigned, typename Graph::Set> worklist;
worklist.push(m_graph.node(0), 0);
while (GraphNodeWith<typename Graph::Node, unsigned> item = worklist.pop()) {
typename Graph::Node block = item.node;
unsigned successorIndex = item.data;
// We initially push with successorIndex = 0 regardless of whether or not we have any
// successors. This is so that we can assign our prenumber. Subsequently we get pushed
// with higher successorIndex values, but only if they are in range.
ASSERT(!successorIndex || successorIndex < m_graph.successors(block).size());
if (!successorIndex) {
m_data[block].semiNumber = m_blockByPreNumber.size();
m_blockByPreNumber.append(block);
}
if (successorIndex < m_graph.successors(block).size()) {
unsigned nextSuccessorIndex = successorIndex + 1;
if (nextSuccessorIndex < m_graph.successors(block).size())
worklist.forcePush(block, nextSuccessorIndex);
typename Graph::Node successorBlock = m_graph.successors(block)[successorIndex];
if (worklist.push(successorBlock, 0))
m_data[successorBlock].parent = block;
}
}
}
void computeSemiDominatorsAndImplicitImmediateDominators()
{
for (unsigned currentPreNumber = m_blockByPreNumber.size(); currentPreNumber-- > 1;) {
typename Graph::Node block = m_blockByPreNumber[currentPreNumber];
BlockData& blockData = m_data[block];
// Step 2:
for (typename Graph::Node predecessorBlock : m_graph.predecessors(block)) {
typename Graph::Node intermediateBlock = eval(predecessorBlock);
blockData.semiNumber = std::min(
m_data[intermediateBlock].semiNumber, blockData.semiNumber);
}
unsigned bucketPreNumber = blockData.semiNumber;
ASSERT(bucketPreNumber <= currentPreNumber);
m_data[m_blockByPreNumber[bucketPreNumber]].bucket.append(block);
link(blockData.parent, block);
// Step 3:
for (typename Graph::Node semiDominee : m_data[blockData.parent].bucket) {
typename Graph::Node possibleDominator = eval(semiDominee);
BlockData& semiDomineeData = m_data[semiDominee];
ASSERT(m_blockByPreNumber[semiDomineeData.semiNumber] == blockData.parent);
BlockData& possibleDominatorData = m_data[possibleDominator];
if (possibleDominatorData.semiNumber < semiDomineeData.semiNumber)
semiDomineeData.dom = possibleDominator;
else
semiDomineeData.dom = blockData.parent;
}
m_data[blockData.parent].bucket.clear();
}
}
void computeExplicitImmediateDominators()
{
for (unsigned currentPreNumber = 1; currentPreNumber < m_blockByPreNumber.size(); ++currentPreNumber) {
typename Graph::Node block = m_blockByPreNumber[currentPreNumber];
BlockData& blockData = m_data[block];
if (blockData.dom != m_blockByPreNumber[blockData.semiNumber])
blockData.dom = m_data[blockData.dom].dom;
}
}
void link(typename Graph::Node from, typename Graph::Node to)
{
m_data[to].ancestor = from;
}
typename Graph::Node eval(typename Graph::Node block)
{
if (!m_data[block].ancestor)
return block;
compress(block);
return m_data[block].label;
}
void compress(typename Graph::Node initialBlock)
{
// This was meant to be a recursive function, but we don't like recursion because we don't
// want to blow the stack. The original function will call compress() recursively on the
// ancestor of anything that has an ancestor. So, we populate our worklist with the
// recursive ancestors of initialBlock. Then we process the list starting from the block
// that is furthest up the ancestor chain.
typename Graph::Node ancestor = m_data[initialBlock].ancestor;
ASSERT(ancestor);
if (!m_data[ancestor].ancestor)
return;
Vector<typename Graph::Node, 16> stack;
for (typename Graph::Node block = initialBlock; block; block = m_data[block].ancestor)
stack.append(block);
// We only care about blocks that have an ancestor that has an ancestor. The last two
// elements in the stack won't satisfy this property.
ASSERT(stack.size() >= 2);
ASSERT(!m_data[stack[stack.size() - 1]].ancestor);
ASSERT(!m_data[m_data[stack[stack.size() - 2]].ancestor].ancestor);
for (unsigned i = stack.size() - 2; i--;) {
typename Graph::Node block = stack[i];
typename Graph::Node& labelOfBlock = m_data[block].label;
typename Graph::Node& ancestorOfBlock = m_data[block].ancestor;
ASSERT(ancestorOfBlock);
ASSERT(m_data[ancestorOfBlock].ancestor);
typename Graph::Node labelOfAncestorOfBlock = m_data[ancestorOfBlock].label;
if (m_data[labelOfAncestorOfBlock].semiNumber < m_data[labelOfBlock].semiNumber)
labelOfBlock = labelOfAncestorOfBlock;
ancestorOfBlock = m_data[ancestorOfBlock].ancestor;
}
}
struct BlockData {
BlockData()
: parent(nullptr)
, preNumber(UINT_MAX)
, semiNumber(UINT_MAX)
, ancestor(nullptr)
, label(nullptr)
, dom(nullptr)
{
}
typename Graph::Node parent;
unsigned preNumber;
unsigned semiNumber;
typename Graph::Node ancestor;
typename Graph::Node label;
Vector<typename Graph::Node> bucket;
typename Graph::Node dom;
};
Graph& m_graph;
typename Graph::template Map<BlockData> m_data;
Vector<typename Graph::Node> m_blockByPreNumber;
};
class NaiveDominators {
public:
NaiveDominators(Graph& graph)
: m_graph(graph)
{
// This implements a naive dominator solver.
ASSERT(!graph.predecessors(graph.root()).size());
unsigned numBlocks = graph.numNodes();
// Allocate storage for the dense dominance matrix.
m_results.grow(numBlocks);
for (unsigned i = numBlocks; i--;)
m_results[i].resize(numBlocks);
m_scratch.resize(numBlocks);
// We know that the entry block is only dominated by itself.
m_results[0].clearAll();
m_results[0].set(0);
// Find all of the valid blocks.
m_scratch.clearAll();
for (unsigned i = numBlocks; i--;) {
if (!graph.node(i))
continue;
m_scratch.set(i);
}
// Mark all nodes as dominated by everything.
for (unsigned i = numBlocks; i-- > 1;) {
if (!graph.node(i) || !graph.predecessors(graph.node(i)).size())
m_results[i].clearAll();
else
m_results[i].set(m_scratch);
}
// Iteratively eliminate nodes that are not dominator.
bool changed;
do {
changed = false;
// Prune dominators in all non entry blocks: forward scan.
for (unsigned i = 1; i < numBlocks; ++i)
changed |= pruneDominators(i);
if (!changed)
break;
// Prune dominators in all non entry blocks: backward scan.
changed = false;
for (unsigned i = numBlocks; i-- > 1;)
changed |= pruneDominators(i);
} while (changed);
}
bool dominates(unsigned from, unsigned to) const
{
return m_results[to].get(from);
}
bool dominates(typename Graph::Node from, typename Graph::Node to) const
{
return dominates(m_graph.index(from), m_graph.index(to));
}
void dump(PrintStream& out) const
{
for (unsigned blockIndex = 0; blockIndex < m_graph.numNodes(); ++blockIndex) {
typename Graph::Node block = m_graph.node(blockIndex);
if (!block)
continue;
out.print(" Block ", m_graph.dump(block), ":");
for (unsigned otherIndex = 0; otherIndex < m_graph.numNodes(); ++otherIndex) {
if (!dominates(m_graph.index(block), otherIndex))
continue;
out.print(" ", m_graph.dump(m_graph.node(otherIndex)));
}
out.print("\n");
}
}
private:
bool pruneDominators(unsigned idx)
{
typename Graph::Node block = m_graph.node(idx);
if (!block || !m_graph.predecessors(block).size())
return false;
// Find the intersection of dom(preds).
m_scratch.set(m_results[m_graph.index(m_graph.predecessors(block)[0])]);
for (unsigned j = m_graph.predecessors(block).size(); j-- > 1;)
m_scratch.filter(m_results[m_graph.index(m_graph.predecessors(block)[j])]);
// The block is also dominated by itself.
m_scratch.set(idx);
return m_results[idx].setAndCheck(m_scratch);
}
Graph& m_graph;
Vector<FastBitVector> m_results; // For each block, the bitvector of blocks that dominate it.
FastBitVector m_scratch; // A temporary bitvector with bit for each block. We recycle this to save new/deletes.
};
struct ValidationContext {
ValidationContext(Graph& graph, Dominators& dominators)
: graph(graph)
, dominators(dominators)
, naiveDominators(graph)
{
}
void reportError(typename Graph::Node from, typename Graph::Node to, const char* message)
{
Error error;
error.from = from;
error.to = to;
error.message = message;
errors.append(error);
}
void handleErrors()
{
if (errors.isEmpty())
return;
dataLog("DFG DOMINATOR VALIDATION FAILED:\n");
dataLog("\n");
dataLog("For block domination relationships:\n");
for (unsigned i = 0; i < errors.size(); ++i) {
dataLog(
" ", graph.dump(errors[i].from), " -> ", graph.dump(errors[i].to),
" (", errors[i].message, ")\n");
}
dataLog("\n");
dataLog("Control flow graph:\n");
for (unsigned blockIndex = 0; blockIndex < graph.numNodes(); ++blockIndex) {
typename Graph::Node block = graph.node(blockIndex);
if (!block)
continue;
dataLog(" Block ", graph.dump(graph.node(blockIndex)), ": successors = [");
CommaPrinter comma;
for (auto successor : graph.successors(block))
dataLog(comma, graph.dump(successor));
dataLog("], predecessors = [");
comma = CommaPrinter();
for (auto predecessor : graph.predecessors(block))
dataLog(comma, graph.dump(predecessor));
dataLog("]\n");
}
dataLog("\n");
dataLog("Lengauer-Tarjan Dominators:\n");
dataLog(dominators);
dataLog("\n");
dataLog("Naive Dominators:\n");
naiveDominators.dump(WTF::dataFile());
dataLog("\n");
dataLog("Graph at time of failure:\n");
dataLog(graph);
dataLog("\n");
dataLog("DFG DOMINATOR VALIDATION FAILIED!\n");
CRASH();
}
Graph& graph;
Dominators& dominators;
NaiveDominators naiveDominators;
struct Error {
typename Graph::Node from;
typename Graph::Node to;
const char* message;
};
Vector<Error> errors;
};
bool naiveDominates(typename Graph::Node from, typename Graph::Node to) const
{
for (typename Graph::Node block = to; block; block = m_data[block].idomParent) {
if (block == from)
return true;
}
return false;
}
template<typename Functor>
void forAllBlocksInDominanceFrontierOfImpl(
typename Graph::Node from, const Functor& functor) const
{
// Paraphrasing from http://en.wikipedia.org/wiki/Dominator_(graph_theory):
// "The dominance frontier of a block 'from' is the set of all blocks 'to' such that
// 'from' dominates an immediate predecessor of 'to', but 'from' does not strictly
// dominate 'to'."
//
// A useful corner case to remember: a block may be in its own dominance frontier if it has
// a loop edge to itself, since it dominates itself and so it dominates its own immediate
// predecessor, and a block never strictly dominates itself.
forAllBlocksDominatedBy(
from,
[&] (typename Graph::Node block) {
for (typename Graph::Node to : m_graph.successors(block)) {
if (!strictlyDominates(from, to))
functor(to);
}
});
}
template<typename Functor>
void forAllBlocksInIteratedDominanceFrontierOfImpl(
const typename Graph::List& from, const Functor& functor) const
{
typename Graph::List worklist = from;
while (!worklist.isEmpty()) {
typename Graph::Node block = worklist.takeLast();
forAllBlocksInDominanceFrontierOfImpl(
block,
[&] (typename Graph::Node otherBlock) {
if (functor(otherBlock))
worklist.append(otherBlock);
});
}
}
struct BlockData {
BlockData()
: idomParent(nullptr)
, preNumber(UINT_MAX)
, postNumber(UINT_MAX)
{
}
Vector<typename Graph::Node> idomKids;
typename Graph::Node idomParent;
unsigned preNumber;
unsigned postNumber;
};
Graph& m_graph;
typename Graph::template Map<BlockData> m_data;
};
} // namespace WTF
using WTF::Dominators;
#endif // WTFDominators_h
|