1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/*
* Copyright (C) 2005, 2006, 2008, 2010, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_Hasher_h
#define WTF_Hasher_h
#include <unicode/utypes.h>
#include <wtf/text/LChar.h>
namespace WTF {
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
// LChar data is interpreted as Latin-1-encoded (zero extended to 16 bits).
// NOTE: The hash computation here must stay in sync with the create_hash_table script in
// JavaScriptCore and the CodeGeneratorJS.pm script in WebCore.
// Golden ratio. Arbitrary start value to avoid mapping all zeros to a hash value of zero.
static const unsigned stringHashingStartValue = 0x9E3779B9U;
class StringHasher {
public:
static const unsigned flagCount = 8; // Save 8 bits for StringImpl to use as flags.
StringHasher()
: m_hash(stringHashingStartValue)
, m_hasPendingCharacter(false)
, m_pendingCharacter(0)
{
}
// The hasher hashes two characters at a time, and thus an "aligned" hasher is one
// where an even number of characters have been added. Callers that always add
// characters two at a time can use the "assuming aligned" functions.
void addCharactersAssumingAligned(UChar a, UChar b)
{
ASSERT(!m_hasPendingCharacter);
m_hash += a;
m_hash = (m_hash << 16) ^ ((b << 11) ^ m_hash);
m_hash += m_hash >> 11;
}
void addCharacter(UChar character)
{
if (m_hasPendingCharacter) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, character);
return;
}
m_pendingCharacter = character;
m_hasPendingCharacter = true;
}
void addCharacters(UChar a, UChar b)
{
if (m_hasPendingCharacter) {
#if !ASSERT_DISABLED
m_hasPendingCharacter = false;
#endif
addCharactersAssumingAligned(m_pendingCharacter, a);
m_pendingCharacter = b;
#if !ASSERT_DISABLED
m_hasPendingCharacter = true;
#endif
return;
}
addCharactersAssumingAligned(a, b);
}
template<typename T, UChar Converter(T)> void addCharactersAssumingAligned(const T* data, unsigned length)
{
ASSERT(!m_hasPendingCharacter);
bool remainder = length & 1;
length >>= 1;
while (length--) {
addCharactersAssumingAligned(Converter(data[0]), Converter(data[1]));
data += 2;
}
if (remainder)
addCharacter(Converter(*data));
}
template<typename T> void addCharactersAssumingAligned(const T* data, unsigned length)
{
addCharactersAssumingAligned<T, defaultConverter>(data, length);
}
template<typename T, UChar Converter(T)> void addCharactersAssumingAligned(const T* data)
{
ASSERT(!m_hasPendingCharacter);
while (T a = *data++) {
T b = *data++;
if (!b) {
addCharacter(Converter(a));
break;
}
addCharactersAssumingAligned(Converter(a), Converter(b));
}
}
template<typename T> void addCharactersAssumingAligned(const T* data)
{
addCharactersAssumingAligned<T, defaultConverter>(data);
}
template<typename T, UChar Converter(T)> void addCharacters(const T* data, unsigned length)
{
if (m_hasPendingCharacter && length) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, Converter(*data++));
--length;
}
addCharactersAssumingAligned<T, Converter>(data, length);
}
template<typename T> void addCharacters(const T* data, unsigned length)
{
addCharacters<T, defaultConverter>(data, length);
}
template<typename T, UChar Converter(T)> void addCharacters(const T* data)
{
if (m_hasPendingCharacter && *data) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, Converter(*data++));
}
addCharactersAssumingAligned<T, Converter>(data);
}
template<typename T> void addCharacters(const T* data)
{
addCharacters<T, defaultConverter>(data);
}
unsigned hashWithTop8BitsMasked() const
{
unsigned result = avalancheBits();
// Reserving space from the high bits for flags preserves most of the hash's
// value, since hash lookup typically masks out the high bits anyway.
result &= (1U << (sizeof(result) * 8 - flagCount)) - 1;
// This avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet". Setting the high bit maintains
// reasonable fidelity to a hash code of 0 because it is likely to yield
// exactly 0 when hash lookup masks out the high bits.
if (!result)
result = 0x80000000 >> flagCount;
return result;
}
unsigned hash() const
{
unsigned result = avalancheBits();
// This avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet". Setting the high bit maintains
// reasonable fidelity to a hash code of 0 because it is likely to yield
// exactly 0 when hash lookup masks out the high bits.
if (!result)
result = 0x80000000;
return result;
}
template<typename T, UChar Converter(T)> static unsigned computeHashAndMaskTop8Bits(const T* data, unsigned length)
{
StringHasher hasher;
hasher.addCharactersAssumingAligned<T, Converter>(data, length);
return hasher.hashWithTop8BitsMasked();
}
template<typename T, UChar Converter(T)> static unsigned computeHashAndMaskTop8Bits(const T* data)
{
StringHasher hasher;
hasher.addCharactersAssumingAligned<T, Converter>(data);
return hasher.hashWithTop8BitsMasked();
}
template<typename T> static unsigned computeHashAndMaskTop8Bits(const T* data, unsigned length)
{
return computeHashAndMaskTop8Bits<T, defaultConverter>(data, length);
}
template<typename T> static unsigned computeHashAndMaskTop8Bits(const T* data)
{
return computeHashAndMaskTop8Bits<T, defaultConverter>(data);
}
template<typename T, UChar Converter(T)> static unsigned computeHash(const T* data, unsigned length)
{
StringHasher hasher;
hasher.addCharactersAssumingAligned<T, Converter>(data, length);
return hasher.hash();
}
template<typename T, UChar Converter(T)> static unsigned computeHash(const T* data)
{
StringHasher hasher;
hasher.addCharactersAssumingAligned<T, Converter>(data);
return hasher.hash();
}
template<typename T> static unsigned computeHash(const T* data, unsigned length)
{
return computeHash<T, defaultConverter>(data, length);
}
template<typename T> static unsigned computeHash(const T* data)
{
return computeHash<T, defaultConverter>(data);
}
static unsigned hashMemory(const void* data, unsigned length)
{
// FIXME: Why does this function use the version of the hash that drops the top 8 bits?
// We want that for all string hashing so we can use those bits in StringImpl and hash
// strings consistently, but I don't see why we'd want that for general memory hashing.
ASSERT(!(length % 2));
return computeHashAndMaskTop8Bits<UChar>(static_cast<const UChar*>(data), length / sizeof(UChar));
}
template<size_t length> static unsigned hashMemory(const void* data)
{
static_assert(!(length % 2), "length must be a multiple of two!");
return hashMemory(data, length);
}
private:
static UChar defaultConverter(UChar character)
{
return character;
}
static UChar defaultConverter(LChar character)
{
return character;
}
unsigned avalancheBits() const
{
unsigned result = m_hash;
// Handle end case.
if (m_hasPendingCharacter) {
result += m_pendingCharacter;
result ^= result << 11;
result += result >> 17;
}
// Force "avalanching" of final 31 bits.
result ^= result << 3;
result += result >> 5;
result ^= result << 2;
result += result >> 15;
result ^= result << 10;
return result;
}
unsigned m_hash;
bool m_hasPendingCharacter;
UChar m_pendingCharacter;
};
class IntegerHasher {
public:
void add(unsigned integer)
{
m_underlyingHasher.addCharactersAssumingAligned(integer, integer >> 16);
}
unsigned hash() const
{
return m_underlyingHasher.hash();
}
private:
StringHasher m_underlyingHasher;
};
} // namespace WTF
using WTF::IntegerHasher;
using WTF::StringHasher;
#endif // WTF_Hasher_h
|