Skip to content

yubink/LeToRankResource

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 

Repository files navigation

LeToRankResource

Learning to rank resources for selective search

dependence

  • SVM Rank
  • Python sklean library

How to Run:

  1. Download /bos/tmp11/zhuyund/LeToRankResource/data.zip. Put under the same dir with source code and unzip.
  2. Modify SVMRank path in the source code. Modify training basedir (./data/aol-train/ or ./data/mqt-train/) in pairwise-train-AOL-cleaned.py.
  3. python ./pairwise-train-AOL-cleaned.py
  4. python ./pairwise-test-clean.py
  5. pairwise-test-clean.py will print out number of relevant documents retrieved by each method (when selecting 4 shards).

Evaluation (MAP, NDCG, ect)

  1. Shard list will be written into ./data/cwb-test/.
  2. Use fedsearch/run_job_writer.rb and fedsearch/make_runs.sh
  3. shardmap: /bos/usr0/zhuyund/fedsearch/data/cent1-qw160-split-new-ext/
  4. central: /bos/usr0/zhuyund/fedsearch/data/cwB-split-sdm-nospam-central/
  5. qrels: /bos/usr0/zhuyund/fedsearch/data/cwb-[2009-2012].qrels /bos/usr0/zhuyund/fedsearch/data/cwb.qrels

TODO:

  • upload AOL and MQT training data.

About

Learning to rank resources for selective search

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%