发布了文章2021-10-31
大多数关于时间序列预测的文章都侧重于特定的聚合程度。但是,当我们能够深入分析聚合的数据,以便在更细粒度的层次上观察同一个序列时,挑战就出现了。在这种情况下,我们往往会发现,对较低水平的预测与总体预测并不一致。为了确保不会出现这种情况,我们可以采用...
发布了文章2021-02-06
我们以使用世界上最好的交通工具改善人们生活的使命为荣。在美国和加拿大,每个月都有超过5000万辆“碳中性”的 Lyft 搭车活动,而我们对搭车的潜力几乎一无所知。
发布了文章2021-01-31
从波哥大的起居室,到东京的早间通勤,再到洛杉矶的海滩和柏林的宿舍,Netflix 致力于为全球1.39亿会员带来欢乐,并将人们与他们喜爱的故事联系起来。从注册过程中与 Netflix 的第一次接触开始 -- 无论是在移动设备、平板电脑、笔记本电脑还是电视上 -- 客户体验的每...
发布了文章2021-01-17
在机器学习的大多数漂亮的结果背后,是一个研究生(我)或工程师花费数小时训练模型和调整算法参数。正是这种乏味无聊的工作使得自动化调参成为可能。
发布了文章2020-11-15
假设你是一个市场营销人员,你在进行一个市场营销活动。你想知道这个活动实际上的效果如何。可以看的指标比如说,你的网站流量,注册,转化率,或者任何你希望提高的东西。
发布了文章2020-07-26
科技公司努力做出数据驱动的产品决策的趋势下,Lyft 也不能免俗。 正因为如此,在线实验,或者说 a / b 测试,变得无处不在。 AB测试太火了,以至于你可能会认为它是一个完全解决的问题。 在这篇文章中,我们将解释为什么实际情况相去甚远,在 Lyft 的拼车市场一样,...
发布了文章2020-05-30
在 Uber Labs,我们的任务是利用行为科学的洞察力和方法论来帮助产品和市场团队改善客户体验。 最近,我们引入了中介模型来解决用户的痛点,它是一种来自学术研究的统计方法。
发布了文章2020-02-13
R 和 Python2/Python3 在过去十年(Pandas问世后)的数据科学领域持续着激烈的竞争,随着时间的推移竞争格局也从混沌走向清晰。
发布了文章2019-08-31
本文将通过下面3个主题讨论地理实验及其在营销活动中的使用。 什么是地理实验?它如何在营销活动中发挥作用? 理解地理实验背后的数学原理 地理实验应用举例与R代码 什么是地理实验?它如何在营销活动中发挥作用? 面包和黄油的实验学习 A/B 测试(又名对比测试)在帮...
赞了文章2019-08-13
效果 代码 {代码...}
发布了文章2019-07-22
使产品测试更安全、更容易,Uber 建立了一个仿真平台,用来仿真司机和骑手在真实世界中的场景。利用一个基于离散事件的模拟器,该平台允许工程师和数据科学家快速地构建原型,并且在无风险环境下,测试新的特征和猜想。
发布了文章2019-07-20
在仿真过程中,许多 activity 是以函数的形式作为参数传入的。这些函数可能与环境交互,比如now函数用来提取环境当前的时间,get_capacity 函数用于提取环境中resource对应的容量,get_n_generated函数用于获取生成器的状态,或者用 get_mon 函数直接收集的历史监测...
回答了问题2019-05-21
tryCatch 了解下
赞了文章2019-05-15
生存分析(Survival Analysis)来源于基础医学领域,最早用来研究各种治疗方案对病人寿命的影响。而寿命则用一个end event(死亡)的方式衡量。基本定义如下:
回答了问题2019-05-15
重启一下 rsession 应该就行了,提示找不到 DLL,可能是 对应的环境变量没有更新过来。
赞了问题2019-05-15
回答了问题2019-05-15
返回结果一个是 data.table 类型,一个是 vector 类型。
赞了问题2019-05-15
回答了问题2019-05-08
colnames(df) = c("A","B")
赞了文章2019-04-14
作为一枚程序员,想要研究Python编程语言与数学学习(教学)的结合,就不能不了解以及比对一下其他数学学习与应用的解决方案,比如R语言、Matlab等数学软件。经过广泛的搜索了解了一下国外的反馈与趋势之后,最终的结论就是Python确实是未来。