- 2.28.0 (latest)
 - 2.27.0
 - 2.26.0
 - 2.25.0
 - 2.24.0
 - 2.23.0
 - 2.22.0
 - 2.21.0
 - 2.20.0
 - 2.19.0
 - 2.18.0
 - 2.17.0
 - 2.16.0
 - 2.15.0
 - 2.14.0
 - 2.13.0
 - 2.12.0
 - 2.11.0
 - 2.10.0
 - 2.9.0
 - 2.8.0
 - 2.7.0
 - 2.6.0
 - 2.5.0
 - 2.4.0
 - 2.3.0
 - 2.2.0
 - 1.36.0
 - 1.35.0
 - 1.34.0
 - 1.33.0
 - 1.32.0
 - 1.31.0
 - 1.30.0
 - 1.29.0
 - 1.28.0
 - 1.27.0
 - 1.26.0
 - 1.25.0
 - 1.24.0
 - 1.22.0
 - 1.21.0
 - 1.20.0
 - 1.19.0
 - 1.18.0
 - 1.17.0
 - 1.16.0
 - 1.15.0
 - 1.14.0
 - 1.13.0
 - 1.12.0
 - 1.11.1
 - 1.10.0
 - 1.9.0
 - 1.8.0
 - 1.7.0
 - 1.6.0
 - 1.5.0
 - 1.4.0
 - 1.3.0
 - 1.2.0
 - 1.1.0
 - 1.0.0
 - 0.26.0
 - 0.25.0
 - 0.24.0
 - 0.23.0
 - 0.22.0
 - 0.21.0
 - 0.20.1
 - 0.19.2
 - 0.18.0
 - 0.17.0
 - 0.16.0
 - 0.15.0
 - 0.14.1
 - 0.13.0
 - 0.12.0
 - 0.11.0
 - 0.10.0
 - 0.9.0
 - 0.8.0
 - 0.7.0
 - 0.6.0
 - 0.5.0
 - 0.4.0
 - 0.3.0
 - 0.2.0
 
KBinsDiscretizer(
    n_bins: int = 5, strategy: typing.Literal["uniform", "quantile"] = "quantile"
)Bin continuous data into intervals.
Parameters | 
      |
|---|---|
| Name | Description | 
n_bins | 
        
  	int, default 5
  	The number of bins to produce. Raises ValueError if   | 
      
strategy | 
        
  	{'uniform', 'quantile'}, default='quantile'
  	Strategy used to define the widths of the bins. 'uniform': All bins in each feature have identical widths. 'quantile': All bins in each feature have the same number of points. Only   | 
      
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values
fit
fit(
    X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.KBinsDiscretizerFit the estimator.
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          The Dataframe or Series with training data.  | 
      
y | 
        
          default None
          Ignored.  | 
      
| Returns | |
|---|---|
| Type | Description | 
KBinsDiscretizer | 
        Fitted scaler. | 
fit_transform
fit_transform(
    X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
    y: typing.Optional[
        typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
    ] = None,
) -> bigframes.dataframe.DataFrameFit to data, then transform it.
| Parameters | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          Series or DataFrame of shape (n_samples, n_features). Input samples.  | 
      
y | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations).  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        DataFrame of shape (n_samples, n_features_new) Transformed DataFrame. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
deep | 
        
          bool, default True
          Default   | 
      
| Returns | |
|---|---|
| Type | Description | 
Dictionary | 
        A dictionary of parameter names mapped to their values. | 
transform
transform(
    X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrameDiscretize the data.
| Parameter | |
|---|---|
| Name | Description | 
X | 
        
          bigframes.dataframe.DataFrame or bigframes.series.Series
          The DataFrame or Series to be transformed.  | 
      
| Returns | |
|---|---|
| Type | Description | 
bigframes.dataframe.DataFrame | 
        Transformed result. |