VSCode AI提效工具,通义灵码前端开发体验

简介: 通义灵码2.0是一款强大的VS Code插件,安装简便,图标易记。其亮点包括接入deepseek-v3/r1模型,支持智能问答、AI编程、代码优化及贴图提问;多语言和编辑器支持;个性化使用满足不同需求。个人版完全免费,节省12%开发时间。对比1.0版本,2.0在功能实现上更加完善,尤其在前端项目中表现出色,根据需求描述生成完整项目结构和详细代码,极大提升开发效率。

安装

安装依旧很简单,vs code拓展插件中搜索就出来了,记住下边这个图标。
image.png

亮点

  1. 新接入了deepseek-v3\deepseek-r1模型,不仅支持智能问答,而且增加了AI程序员,可以直接按照完成编码任务,修改优化代码,甚至可以直接贴图提问。简直不要太厉害。
    image.png

  2. 多语言、多编辑器全方位支持
    image.png

  3. 个人或企业可以分别个性化使用,满足一切使用需求

重要的是个人版完全免费,这对普通开发者简直太友好了。
image.png

这对程序员提效真的太哇塞了,有数据显示可以直接节省12%的开发时间。
image.png

通义灵码 2.0 和 1.0 对比

前端项目体验

看我测试AI程序员实现的项目:

(1)根据我的需求描述,进行功能需求分析
image.png

(2)生成的完整项目结构,及详细的代码
image.png

image.png

只要你描述的够详细,需求实现的越完善,这在同类产品中确实出众👍!

目录
相关文章
|
2月前
|
人工智能 自然语言处理 前端开发
最佳实践2:用通义灵码以自然语言交互实现 AI 高考志愿填报系统
本项目旨在通过自然语言交互,结合通义千问AI模型,构建一个智能高考志愿填报系统。利用Vue3与Python,实现信息采集、AI推荐、专业详情展示及数据存储功能,支持响应式设计与Supabase数据库集成,助力考生精准择校选专业。(239字)
344 12
|
2月前
|
存储 人工智能 NoSQL
AI大模型应用实践 八:如何通过RAG数据库实现大模型的私有化定制与优化
RAG技术通过融合外部知识库与大模型,实现知识动态更新与私有化定制,解决大模型知识固化、幻觉及数据安全难题。本文详解RAG原理、数据库选型(向量库、图库、知识图谱、混合架构)及应用场景,助力企业高效构建安全、可解释的智能系统。
|
2月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
400 121
|
2月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
312 114
|
2月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
324 120
|
2月前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
290 117
|
2月前
|
人工智能 机器人 人机交互
当AI学会“看、听、懂”:多模态技术的现在与未来
当AI学会“看、听、懂”:多模态技术的现在与未来
314 117
|
2月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1378 16
构建AI智能体:一、初识AI大模型与API调用
|
2月前
|
人工智能 自然语言处理 安全
AI助教系统:基于大模型与智能体架构的新一代教育技术引擎
AI助教系统融合大语言模型、教育知识图谱、多模态交互与智能体架构,实现精准学情诊断、个性化辅导与主动教学。支持图文语音输入,本地化部署保障隐私,重构“教、学、评、辅”全链路,推动因材施教落地,助力教育数字化转型。(238字)

热门文章

最新文章