Thread.sleep(0) 到底有什么

简介: Thread.Sleep用于让线程暂停执行一段时间,不参与CPU竞争。Sleep(1000)并不保证精确唤醒时间,因系统调度受优先级和资源影响;而Sleep(0)则触发系统立即重新分配CPU,给予其他线程执行机会,避免界面假死。理解其原理有助于优化多线程程序性能与响应性。

我们可能经常会用到 Thread.Sleep 函数来吧使线程挂起一段时间。那么你有没有正确的理解这个函数的用法呢?
思考下面这两个问题:
假设现在是 2008-4-7 12:00:00.000,如果我调用一下 Thread.Sleep(1000) ,在 2008-4-7 12:00:01.000 的时候,这个线程会不会被唤醒?
某人的代码中用了一句看似莫明其妙的话:Thread.Sleep(0) 。既然是 Sleep 0 毫秒,那么他跟去掉这句代码相比,有啥区别么?
我们先回顾一下操作系统原理。
操作系统中,CPU竞争有很多种策略。Unix系统使用的是时间片算法,而Windows则属于抢占式的。
在时间片算法中,所有的进程排成一个队列。操作系统按照他们的顺序,给每个进程分配一段时间,即该进程允许运行的时间。如果在时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。调度程 序所要做的就是维护一张就绪进程列表,当进程用完它的时间片后,它被移到队列的末尾。
所谓抢占式操作系统,就是说如果一个进程得到了 CPU 时间,除非它自己放弃使用 CPU ,否则将完全霸占 CPU 。因此可以看出,在抢 占式操作系统中,操作系统假设所有的进程都是“人品很好”的,会主动退出 CPU 。
在抢占式操作系统中,假设有若干进程,操作系统会根据他们的优先级、饥饿时间(已经多长时间没有使用过 CPU 了),给他们算出一 个总的优先级来。操作系统就会把 CPU 交给总优先级最高的这个进程。当进程执行完毕或者自己主动挂起后,操作系统就会重新计算一 次所有进程的总优先级,然后再挑一个优先级最高的把 CPU 控制权交给他。
我们用分蛋糕的场景来描述这两种算法。假设有源源不断的蛋糕(源源不断的时间),一副刀叉(一个CPU),10个等待吃蛋糕的人(10 个进程)。
如果是 Unix操作系统来负责分蛋糕,那么他会这样定规矩:每个人上来吃 1 分钟,时间到了换下一个。最后一个人吃完了就再从头开始。于是,不管这10个人是不是优先级不同、饥饿程度不同、饭量不同,每个人上来的时候都可以吃 1 分钟。当然,如果有人本来不太饿,或者饭量小,吃了30秒钟之后就吃饱了,那么他可以跟操作系统说:我已经吃饱了(挂起)。于是操作系统就会让下一个人接着来。
如果是 Windows 操作系统来负责分蛋糕的,那么场面就很有意思了。他会这样定规矩:我会根据你们的优先级、饥饿程度去给你们每个人计算一个优先级。优先级最高的那个人,可以上来吃蛋糕——吃到你不想吃为止。等这个人吃完了,我再重新根据优先级、饥饿程度来计算每个人的优先级,然后再分给优先级最高的那个人。
这样看来,这个场面就有意思了——可能有些人是PPMM,因此具有高优先级,于是她就可以经常来吃蛋糕。可能另外一个人是个丑男,而去很ws,所以优先级特别低,于是好半天了才轮到他一次(因为随着时间的推移,他会越来越饥饿,因此算出来的总优先级就会越来越高,因此总有一天会轮到他的)。而且,如果一不小心让一个大胖子得到了刀叉,因为他饭量大,可能他会霸占着蛋糕连续吃很久很久,导致旁边的人在那里咽口水。。。
而且,还可能会有这种情况出现:操作系统现在计算出来的结果,5号PPMM总优先级最高,而且高出别人一大截。因此就叫5号来吃蛋糕。5号吃了一小会儿,觉得没那么饿了,于是说“我不吃了”(挂起)。因此操作系统就会重新计算所有人的优先级。因为5号刚刚吃过,因此她的饥饿程度变小了,于是总优先级变小了;而其他人因为多等了一会儿,饥饿程度都变大了,所以总优先级也变大了。不过这时候仍然有可能5号的优先级比别的都高,只不过现在只比其他的高一点点——但她仍然是总优先级最高的啊。因此操作系统就会说:5号mm上来吃蛋糕……(5号mm心里郁闷,这不刚吃过嘛……人家要减肥……谁叫你长那么漂亮,获得了那么高的优先级)。
那么,Thread.Sleep 函数是干吗的呢?还用刚才的分蛋糕的场景来描述。上面的场景里面,5号MM在吃了一次蛋糕之后,觉得已经有8分饱了,她觉得在未来的半个小时之内都不想再来吃蛋糕了,那么她就会跟操作系统说:在未来的半个小时之内不要再叫我上来吃蛋糕了。这样,操作系统在随后的半个小时里面重新计算所有人总优先级的时候,就会忽略5号mm。Sleep函数就是干这事的,他告诉操作系统“在未来的多少毫秒内我不参与CPU竞争”。
看完了 Thread.Sleep 的作用,我们再来想想文章开头的两个问题。
对于第一个问题,答案是:不一定。因为你只是告诉操作系统:在未来的1000毫秒内我不想再参与到CPU竞争。那么1000毫秒过去之后,这时候也许另外一个线程正在使用CPU,那么这时候操作系统是不会重新分配CPU的,直到那个线程挂起或结束;况且,即使这个时候恰巧轮到操作系统进行CPU 分配,那么当前线程也不一定就是总优先级最高的那个,CPU还是可能被其他线程抢占去。
与此相似的,Thread有个Resume函数,是用来唤醒挂起的线程的。好像上面所说的一样,这个函数只是“告诉操作系统我从现在起开始参与CPU竞争了”,这个函数的调用并不能马上使得这个线程获得CPU控制权。
对于第二个问题,答案是:有,而且区别很明显。假设我们刚才的分蛋糕场景里面,有另外一个PPMM 7号,她的优先级也非常非常高(因为非常非常漂亮),所以操作系统总是会叫道她来吃蛋糕。而且,7号也非常喜欢吃蛋糕,而且饭量也很大。不过,7号人品很好,她很善良,她没吃几口就会想:如果现在有别人比我更需要吃蛋糕,那么我就让给他。因此,她可以每吃几口就跟操作系统说:我们来重新计算一下所有人的总优先级吧。不过,操作系统不接受这个建议——因为操作系统不提供这个接口。于是7号mm就换了个说法:“在未来的0毫秒之内不要再叫我上来吃蛋糕了”。这个指令操作系统是接受的,于是此时操作系统就会重新计算大家的总优先级——注意这个时候是连7号一起计算的,因为“0毫秒已经过去了”嘛。因此如果没有比7号更需要吃蛋糕的人出现,那么下一次7号还是会被叫上来吃蛋糕。
因此,Thread.Sleep(0)的作用,就是“触发操作系统立刻重新进行一次CPU竞争”。竞争的结果也许是当前线程仍然获得CPU控制权,也许会换成别的线程获得CPU控制权。这也是我们在大循环里面经常会写一句Thread.Sleep(0) ,因为这样就给了其他线程比如Paint线程获得CPU控制权的权力,这样界面就不会假死在那里。
另外,虽然上面提到说“除非它自己放弃使用 CPU ,否则将完全霸占 CPU”,但这个行为仍然是受到制约的——操作系统会监控你霸占CPU的情况,如果发现某个线程长时间霸占CPU,会强制使这个线程挂起,因此在实际上不会出现“一个线程一直霸占着 CPU 不放”的情况。至于我们的大循环造成程序假死,并不是因为这个线程一直在霸占着CPU。实际上在这段时间操作系统已经进行过多次CPU竞争了,只不过其他线程在获得CPU控制权之后很短时间内马上就退出了,于是就又轮到了这个线程继续执行循环,于是就又用了很久才被操作系统强制挂起。。。因此反应到界面上,看起来就好像这个线程一直在霸占着CPU一样。

相关文章
|
11天前
|
消息中间件 人工智能 NoSQL
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
Apache RocketMQ 推出轻量级通信模型 LiteTopic,专为 AI 时代多智能体协作设计。它通过百万级队列支持、会话状态持久化与断点续传能力,解决传统架构中通信脆弱、状态易失等问题。结合 A2A 协议与阿里巴巴 AgentScope 框架,实现高可靠、低延迟的 Agent-to-Agent 通信,助力构建稳定、可追溯的智能体应用。现已开源并提供免费试用,加速 AI 应用落地。
233 35
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
|
11天前
|
人工智能 安全 数据可视化
面向业务落地的AI产品评测体系设计与平台实现
在AI技术驱动下,淘宝闪购推进AI应用落地,覆盖数字人、数据分析、多模态创作与搜推AI化四大场景。面对研发模式变革与Agent链路复杂性,构建“评什么、怎么评、如何度量”的评测体系,打造端到端质量保障平台,并规划多模态评测、可视化标注与插件市场,支撑业务持续创新。
231 36
|
11小时前
|
消息中间件 Java 数据安全/隐私保护
RabbitMQ集群部署
本文介绍RabbitMQ集群部署与高可用方案,涵盖普通集群搭建、Erlang Cookie配置、节点发现机制及安全设置。通过静态配置实现三节点集群,并详解镜像模式(exactly、all、nodes)提升高可用性,避免单点故障。同时引入3.8版本后的仲裁队列,简化配置,实现数据冗余与自动主从切换,保障消息服务的稳定性与可靠性。
|
11小时前
|
Java 应用服务中间件 Sentinel
服务保护、分布式事务
本章学习微服务保护核心知识,掌握微服务雪崩、熔断降级、限流、线程隔离等机制,理解CAP原理,熟练使用Sentinel实现熔断、降级与限流策略,并通过FallbackFactory和注解方式编写降级逻辑,掌握Seata实现分布式事务及AT模式原理。
|
11小时前
|
存储 缓存 算法
零拷贝 你会如何实现文
实现文件传输时,传统方式因频繁系统调用导致大量上下文切换与内存拷贝,性能低下。零拷贝技术通过减少用户态与内核态切换、避免重复数据拷贝,显著提升效率。结合PageCache预读与大文件场景下的异步IO+直接IO策略,可优化不同规模文件的传输性能。
|
11小时前
|
SQL Java 数据库连接
持久层框架MyBatisPlus
MyBatisPlus是基于MyBatis的增强ORM框架,简化单表增删改查操作。通过继承BaseMapper即可实现CRUD,支持注解映射与全局配置,提供QueryWrapper、UpdateWrapper等条件构造器,灵活构建查询条件,并可结合自定义SQL满足复杂业务需求,大幅提升开发效率。
|
11小时前
|
缓存 算法 搜索推荐
线程池
线程池是将多个线程统一管理的“池化”技术,避免频繁创建销毁线程带来的开销。Java中通过`ExecutorService`和`ThreadPoolExecutor`等类实现,核心原理是复用线程、任务队列调度及合理的拒绝策略。`ScheduledThreadPoolExecutor`支持延时与周期性任务,基于`DelayedWorkQueue`实现延迟调度。`Executors`工厂类提供多种线程汛建造方法,如固定大小、缓存型、单线程等,适用于不同并发场景,提升系统性能与资源利用率。
|
11小时前
|
监控 算法 Unix
Thread.sleep(0) 到底有什么用(
Thread.Sleep用于让线程暂停执行一段时间,不参与CPU竞争。Sleep(1000)并不保证精确唤醒时间,因系统调度受优先级和线程状态影响;而Sleep(0)会触发系统立即重新分配CPU,给其他线程执行机会,避免界面假死。两者作用显著不同。
|
11小时前
|
监控 算法 Unix
Thread.sleep(0) 到底有什么用(读完
本简介旨在简要介绍所提供的内容,突出其核心要点与价值。通过精炼语言,概括主题思想,帮助读者快速理解主要内容,适用于推广、导读或信息传递场景,力求在240字符内清晰传达关键信息。
|
11小时前
|
Java Sentinel 微服务
服务保护、分布式事务
本课程聚焦微服务保护核心技能,涵盖雪崩问题、熔断降级、限流隔离等机制,学习Sentinel实现熔断、降级、限流策略配置,掌握FallbackFactory降级逻辑编写,理解CAP原理与Seata分布式事务,全面提升微服务高可用设计能力。