Skip to content

Eval bug: multimodal llama-gemma3-cli gives nonsensical outputs when used with Vulkan #13046

Open
@ddpasa

Description

@ddpasa

Name and Version

$ llama-gemma3-cli --version
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Intel(R) Iris(R) Plus Graphics (ICL GT2) (Intel open-source Mesa driver) | uma: 1 | fp16: 1 | warp size: 32 | shared memory: 65536 | int dot: 0 | matrix cores: none
version: 5161 (66023048)
built with cc (GCC) 14.2.1 20250207 for x86_64-pc-linux-gnu

Operating systems

Linux

GGML backends

Vulkan

Hardware

ggml_vulkan: 0 = Intel(R) Iris(R) Plus Graphics (ICL GT2) (Intel open-source Mesa driver) | uma: 1 | fp16: 1 | warp size: 32 | shared memory: 65536 | int dot: 0 | matrix cores: none

Models

gemma-3-4b-it-Q4_K_M.gguf
gemma-3-mmproj-model-f16.gguf

Problem description & steps to reproduce

llama-gemma3-cli works fine with the cpu build, but the vulkan build is giving nonsensical output not related to the image I provide. which is a shame because vulkan encodes the images roughly at x4 the speed.

First Bad Commit

No response

Relevant log output

['llama-gemma3-cli', '-ngl', '0', '-m', '/vlms/gemma-3-4b-it-Q4_K_M.gguf', '--mmproj', '/vlms/gemma-3-mmproj-model-f16.gguf', '--image', '/tmp/tmptfid5vmp.jpg', '-p', 'Describe']
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = Intel(R) Iris(R) Plus Graphics (ICL GT2) (Intel open-source Mesa driver) | uma: 1 | fp16: 1 | warp size: 32 | shared memory: 65536 | int dot: 0 | matrix cores: none
build: 5161 (66023048) with cc (GCC) 14.2.1 20250207 for x86_64-pc-linux-gnu
llama_model_load_from_file_impl: using device Vulkan0 (Intel(R) Iris(R) Plus Graphics (ICL GT2)) - 7773 MiB free
llama_model_loader: loaded meta data with 40 key-value pairs and 444 tensors from /vlms/gemma-3-4b-it-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = gemma3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Gemma 3 4b It
llama_model_loader: - kv   3:                           general.finetune str              = it
llama_model_loader: - kv   4:                           general.basename str              = gemma-3
llama_model_loader: - kv   5:                         general.size_label str              = 4B
llama_model_loader: - kv   6:                            general.license str              = gemma
llama_model_loader: - kv   7:                   general.base_model.count u32              = 1
llama_model_loader: - kv   8:                  general.base_model.0.name str              = Gemma 3 4b Pt
llama_model_loader: - kv   9:          general.base_model.0.organization str              = Google
llama_model_loader: - kv  10:              general.base_model.0.repo_url str              = https://huggingface.co/google/gemma-3...
llama_model_loader: - kv  11:                               general.tags arr[str,1]       = ["image-text-to-text"]
llama_model_loader: - kv  12:                      gemma3.context_length u32              = 131072
llama_model_loader: - kv  13:                    gemma3.embedding_length u32              = 2560
llama_model_loader: - kv  14:                         gemma3.block_count u32              = 34
llama_model_loader: - kv  15:                 gemma3.feed_forward_length u32              = 10240
llama_model_loader: - kv  16:                gemma3.attention.head_count u32              = 8
llama_model_loader: - kv  17:    gemma3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  18:                gemma3.attention.key_length u32              = 256
llama_model_loader: - kv  19:              gemma3.attention.value_length u32              = 256
llama_model_loader: - kv  20:                      gemma3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  21:            gemma3.attention.sliding_window u32              = 1024
llama_model_loader: - kv  22:             gemma3.attention.head_count_kv u32              = 4
llama_model_loader: - kv  23:                   gemma3.rope.scaling.type str              = linear
llama_model_loader: - kv  24:                 gemma3.rope.scaling.factor f32              = 8.000000
llama_model_loader: - kv  25:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  26:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  27:                      tokenizer.ggml.tokens arr[str,262144]  = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv  28:                      tokenizer.ggml.scores arr[f32,262144]  = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  29:                  tokenizer.ggml.token_type arr[i32,262144]  = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 2
llama_model_loader: - kv  31:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  32:            tokenizer.ggml.unknown_token_id u32              = 3
llama_model_loader: - kv  33:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  34:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  35:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  36:                    tokenizer.chat_template str              = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv  37:            tokenizer.ggml.add_space_prefix bool             = false
llama_model_loader: - kv  38:               general.quantization_version u32              = 2
llama_model_loader: - kv  39:                          general.file_type u32              = 15
llama_model_loader: - type  f32:  205 tensors
llama_model_loader: - type q4_K:  204 tensors
llama_model_loader: - type q6_K:   35 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 2.31 GiB (5.12 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 6414
load: token to piece cache size = 1.9446 MB
print_info: arch             = gemma3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2560
print_info: n_layer          = 34
print_info: n_head           = 8
print_info: n_head_kv        = 4
print_info: n_rot            = 256
print_info: n_swa            = 1024
print_info: n_swa_pattern    = 6
print_info: n_embd_head_k    = 256
print_info: n_embd_head_v    = 256
print_info: n_gqa            = 2
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 6.2e-02
print_info: n_ff             = 10240
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 0.125
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 4B
print_info: model params     = 3.88 B
print_info: general.name     = Gemma 3 4b It
print_info: vocab type       = SPM
print_info: n_vocab          = 262144
print_info: n_merges         = 0
print_info: BOS token        = 2 '<bos>'
print_info: EOS token        = 1 '<eos>'
print_info: EOT token        = 106 '<end_of_turn>'
print_info: UNK token        = 3 '<unk>'
print_info: PAD token        = 0 '<pad>'
print_info: LF token         = 248 '<0x0A>'
print_info: EOG token        = 1 '<eos>'
print_info: EOG token        = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/35 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  2368.18 MiB
...............................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 0.125
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     1.00 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 34, can_shift = 1
init:        CPU KV buffer size =   544.00 MiB
llama_context: KV self size  =  544.00 MiB, K (f16):  272.00 MiB, V (f16):  272.00 MiB
llama_context:    Vulkan0 compute buffer size =  1042.00 MiB
llama_context: Vulkan_Host compute buffer size =    21.01 MiB
llama_context: graph nodes  = 1435
llama_context: graph splits = 582 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_ctx: CLIP using Vulkan0 backend
clip_model_loader: model name:   
clip_model_loader: description:  
clip_model_loader: GGUF version: 3
clip_model_loader: alignment:    32
clip_model_loader: n_tensors:    439
clip_model_loader: n_kv:         16

load_hparams: text_encoder:       0
load_hparams: vision_encoder:     1
load_hparams: llava_projector:    0
load_hparams: minicpmv_projector: 0
load_hparams: minicpmv_version:   2
load_hparams: glm_projector:      0
load_hparams: model size:         134216693.33 MiB
load_hparams: metadata size:      0.15 MiB
alloc_compute_meta:    Vulkan0 compute buffer size =  1128.81 MiB
alloc_compute_meta:        CPU compute buffer size =     9.19 MiB
encoding image...
image encoded in 20690 ms
image decoded in 8543 ms
llama_perf_context_print:        load time =    1562.59 ms
llama_perf_context_print: prompt eval time =   29789.51 ms /   269 tokens (  110.74 ms per token,     9.03 tokens per second)
llama_perf_context_print:        eval time =   16103.49 ms /   206 runs   (   78.17 ms per token,    12.79 tokens per second)
llama_perf_context_print:       total time =   46766.79 ms /   475 tokens

Do you want to explore this concept further, or do you want to discuss something else?

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions