Skip to content

Eval bug: SIGILL #13161

Open
Open
@KTibow

Description

@KTibow

Name and Version

version: 5215 (5f5e39e)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu

Operating systems

Linux

GGML backends

CPU

Hardware

Qualcomm Snapdragon X Elite

Models

Happens with both https://huggingface.co/bartowski/Qwen_Qwen3-4B-GGUF and https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF

Problem description & steps to reproduce

I'm just running llama-server from the Arm64 download with different GGUFs

First Bad Commit

No response

Relevant log output

~/D/models [127]> ./llama-server -m Qwen_Qwen3-4B-Q8_0.gguf
build: 5215 (5f5e39e1) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
system info: n_threads = 12, n_threads_batch = 12, total_threads = 12

system_info: n_threads = 12 (n_threads_batch = 12) / 12 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | SVE_CNT = 65535 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 11
main: loading model
srv    load_model: loading model 'Qwen_Qwen3-4B-Q8_0.gguf'
llama_model_loader: loaded meta data with 31 key-value pairs and 398 tensors from Qwen_Qwen3-4B-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3 4B
llama_model_loader: - kv   3:                           general.basename str              = Qwen3
llama_model_loader: - kv   4:                         general.size_label str              = 4B
llama_model_loader: - kv   5:                          qwen3.block_count u32              = 36
llama_model_loader: - kv   6:                       qwen3.context_length u32              = 32768
llama_model_loader: - kv   7:                     qwen3.embedding_length u32              = 2560
llama_model_loader: - kv   8:                  qwen3.feed_forward_length u32              = 9728
llama_model_loader: - kv   9:                 qwen3.attention.head_count u32              = 32
llama_model_loader: - kv  10:              qwen3.attention.head_count_kv u32              = 8
llama_model_loader: - kv  11:                       qwen3.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  12:     qwen3.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  13:                 qwen3.attention.key_length u32              = 128
llama_model_loader: - kv  14:               qwen3.attention.value_length u32              = 128
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  19:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  20:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  21:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  22:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  24:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - kv  26:                          general.file_type u32              = 7
llama_model_loader: - kv  27:                      quantize.imatrix.file str              = /models_out/Qwen3-4B-GGUF/Qwen_Qwen3-...
llama_model_loader: - kv  28:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  29:             quantize.imatrix.entries_count i32              = 252
llama_model_loader: - kv  30:              quantize.imatrix.chunks_count i32              = 137
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q8_0:  253 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 3.98 GiB (8.50 BPW) 
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3
print_info: vocab_only       = 0
print_info: n_ctx_train      = 32768
print_info: n_embd           = 2560
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 2
print_info: rope scaling     = linear
print_info: freq_base_train  = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 32768
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = ?B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3 4B
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/37 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  4076.43 MiB
............................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 1000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.58 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1
init:        CPU KV buffer size =   576.00 MiB
llama_context: KV self size  =  576.00 MiB, K (f16):  288.00 MiB, V (f16):  288.00 MiB
llama_context:        CPU compute buffer size =   301.75 MiB
llama_context: graph nodes  = 1374
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
fish: Job 1, './llama-server -m Qwen_Qwen3-4B…' terminated by signal SIGILL (Illegal instruction)
~/D/models [SIGILL]> ./llama-server -m Llama-3.2-1B-Instruct-Q8_0.gguf 
build: 5215 (5f5e39e1) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for aarch64-linux-gnu
system info: n_threads = 12, n_threads_batch = 12, total_threads = 12

system_info: n_threads = 12 (n_threads_batch = 12) / 12 | CPU : NEON = 1 | ARM_FMA = 1 | FP16_VA = 1 | MATMUL_INT8 = 1 | DOTPROD = 1 | SVE_CNT = 65535 | OPENMP = 1 | AARCH64_REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 11
main: loading model
srv    load_model: loading model 'Llama-3.2-1B-Instruct-Q8_0.gguf'
llama_model_loader: loaded meta data with 35 key-value pairs and 147 tensors from Llama-3.2-1B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama 3.2 1B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Llama-3.2
llama_model_loader: - kv   5:                         general.size_label str              = 1B
llama_model_loader: - kv   6:                            general.license str              = llama3.2
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 16
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 8192
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                 llama.attention.key_length u32              = 64
llama_model_loader: - kv  18:               llama.attention.value_length u32              = 64
llama_model_loader: - kv  19:                          general.file_type u32              = 7
llama_model_loader: - kv  20:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  21:                 llama.rope.dimension_count u32              = 64
llama_model_loader: - kv  22:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  23:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  24:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  25:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  26:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  27:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  28:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  29:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  30:               general.quantization_version u32              = 2
llama_model_loader: - kv  31:                      quantize.imatrix.file str              = /models_out/Llama-3.2-1B-Instruct-GGU...
llama_model_loader: - kv  32:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  33:             quantize.imatrix.entries_count i32              = 112
llama_model_loader: - kv  34:              quantize.imatrix.chunks_count i32              = 125
llama_model_loader: - type  f32:   34 tensors
llama_model_loader: - type q8_0:  113 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 1.22 GiB (8.50 BPW) 
load: special tokens cache size = 256
load: token to piece cache size = 0.7999 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2048
print_info: n_layer          = 16
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 64
print_info: n_embd_head_v    = 64
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 8192
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 1B
print_info: model params     = 1.24 B
print_info: general.name     = Llama 3.2 1B Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 128256
print_info: n_merges         = 280147
print_info: BOS token        = 128000 '<|begin_of_text|>'
print_info: EOS token        = 128009 '<|eot_id|>'
print_info: EOT token        = 128009 '<|eot_id|>'
print_info: EOM token        = 128008 '<|eom_id|>'
print_info: LF token         = 198 'Ċ'
print_info: EOG token        = 128008 '<|eom_id|>'
print_info: EOG token        = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 0 repeating layers to GPU
load_tensors: offloaded 0/17 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  1252.41 MiB
..............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 500000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.49 MiB
init: kv_size = 4096, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 16, can_shift = 1
init:        CPU KV buffer size =   128.00 MiB
llama_context: KV self size  =  128.00 MiB, K (f16):   64.00 MiB, V (f16):   64.00 MiB
llama_context:        CPU compute buffer size =   280.01 MiB
llama_context: graph nodes  = 550
llama_context: graph splits = 1
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
fish: Job 1, './llama-server -m Llama-3.2-1B-…' terminated by signal SIGILL (Illegal instruction)

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions