Open
Description
Name and Version
build: 5273 (8ae5ebc) with gcc-14 (Homebrew GCC 14.2.0_1) 14.2.0 for x86_64-pc-linux-gnu
Operating systems
Linux
GGML backends
CUDA
Hardware
2x T4
Models
https://huggingface.co/unsloth/Qwen3-32B-GGUF/blob/main/Qwen3-32B-UD-Q4_K_XL.gguf
Problem description & steps to reproduce
NaN perplexity and completely trashed output while using this model
First Bad Commit
No response
Relevant log output
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: Tesla T4, compute capability 7.5, VMM: yes
Device 1: Tesla T4, compute capability 7.5, VMM: yes
build: 5273 (8ae5ebcf) with gcc-14 (Homebrew GCC 14.2.0_1) 14.2.0 for x86_64-pc-linux-gnu
llama_model_load_from_file_impl: using device CUDA0 (Tesla T4) - 14992 MiB free
llama_model_load_from_file_impl: using device CUDA1 (Tesla T4) - 14992 MiB free
llama_model_loader: loaded meta data with 32 key-value pairs and 707 tensors from /root/Qwen3-32B-UD-Q4_K_XL.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-32B
llama_model_loader: - kv 3: general.basename str = Qwen3-32B
llama_model_loader: - kv 4: general.quantized_by str = Unsloth
llama_model_loader: - kv 5: general.size_label str = 32B
llama_model_loader: - kv 6: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 7: qwen3.block_count u32 = 64
llama_model_loader: - kv 8: qwen3.context_length u32 = 40960
llama_model_loader: - kv 9: qwen3.embedding_length u32 = 5120
llama_model_loader: - kv 10: qwen3.feed_forward_length u32 = 25600
llama_model_loader: - kv 11: qwen3.attention.head_count u32 = 64
llama_model_loader: - kv 12: qwen3.attention.head_count_kv u32 = 8
llama_model_loader: - kv 13: qwen3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 14: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 15: qwen3.attention.key_length u32 = 128
llama_model_loader: - kv 16: qwen3.attention.value_length u32 = 128
llama_model_loader: - kv 17: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 18: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 19: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 20: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 21: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 22: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 23: tokenizer.ggml.padding_token_id u32 = 151654
llama_model_loader: - kv 24: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 25: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 26: general.quantization_version u32 = 2
llama_model_loader: - kv 27: general.file_type u32 = 15
llama_model_loader: - kv 28: quantize.imatrix.file str = Qwen3-32B-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 29: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-32B.txt
llama_model_loader: - kv 30: quantize.imatrix.entries_count i32 = 448
llama_model_loader: - kv 31: quantize.imatrix.chunks_count i32 = 32
llama_model_loader: - type f32: 257 tensors
llama_model_loader: - type q4_K: 293 tensors
llama_model_loader: - type q5_K: 35 tensors
llama_model_loader: - type q6_K: 94 tensors
llama_model_loader: - type iq4_xs: 28 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 18.64 GiB (4.89 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3
print_info: vocab_only = 0
print_info: n_ctx_train = 40960
print_info: n_embd = 5120
print_info: n_layer = 64
print_info: n_head = 64
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 8
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 25600
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 40960
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 32B
print_info: model params = 32.76 B
print_info: general.name = Qwen3-32B
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 11 ','
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151654 '<|vision_pad|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 64 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 65/65 layers to GPU
load_tensors: CUDA0_Split model buffer size = 9285.39 MiB
load_tensors: CUDA1_Split model buffer size = 9383.22 MiB
load_tensors: CUDA0 model buffer size = 1.32 MiB
load_tensors: CUDA1 model buffer size = 1.26 MiB
load_tensors: CPU_Mapped model buffer size = 417.30 MiB
................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 4
llama_context: n_ctx = 2048
llama_context: n_ctx_per_seq = 512
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (512) < n_ctx_train (40960) -- the full capacity of the model will not be utilized
llama_context: CUDA_Host output buffer size = 2.32 MiB
llama_kv_cache_unified: kv_size = 2048, type_k = 'f16', type_v = 'f16', n_layer = 64, can_shift = 1, padding = 32
llama_kv_cache_unified: CUDA0 KV buffer size = 264.00 MiB
llama_kv_cache_unified: CUDA1 KV buffer size = 248.00 MiB
llama_kv_cache_unified: KV self size = 512.00 MiB, K (f16): 256.00 MiB, V (f16): 256.00 MiB
llama_context: CUDA0 compute buffer size = 312.00 MiB
llama_context: CUDA1 compute buffer size = 312.00 MiB
llama_context: CUDA_Host compute buffer size = 14.01 MiB
llama_context: graph nodes = 2438
llama_context: graph splits = 3
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
system_info: n_threads = 2 (n_threads_batch = 2) / 4 | CUDA : ARCHS = 750 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 786.684 ms
perplexity: calculating perplexity over 528 chunks, n_ctx=512, batch_size=2048, n_seq=4
perplexity: 7.88 seconds per pass - ETA 17.32 minutes
[1]nan,[2]nan,[3]nan,[4]nan,[5]nan,[6]nan,[7]nan,[8]nan,^C