Open
Description
Name and Version
version: 5307 (814f795)
built with cc (Ubuntu 14.2.0-4ubuntu2~24.04) 14.2.0 for aarch64-linux-gnu
Operating systems
Linux
GGML backends
BLAS
Hardware
Cobalt-100 Azure ARM
Models
Qwen3-4B-128K-Q4* tried all
Problem description & steps to reproduce
../build/bin/llama-speculative -m Qwen3-4B-128K-IQ4_XS.gguf -md Qwen3-4B-128K-Q4_0.gguf
First Bad Commit
No response
Relevant log output
build: 5307 (814f795e) with cc (Ubuntu 14.2.0-4ubuntu2~24.04) 14.2.0 for aarch64-linux-gnu
llama_model_loader: loaded meta data with 44 key-value pairs and 398 tensors from Qwen3-4B-128K-IQ4_XS.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-4B-128K
llama_model_loader: - kv 3: general.finetune str = 128k
llama_model_loader: - kv 4: general.basename str = Qwen3-4B-128K
llama_model_loader: - kv 5: general.quantized_by str = Unsloth
llama_model_loader: - kv 6: general.size_label str = 4B
llama_model_loader: - kv 7: general.license str = apache-2.0
llama_model_loader: - kv 8: general.license.link str = https://huggingface.co/Qwen/Qwen3-4B/...
llama_model_loader: - kv 9: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 10: general.base_model.count u32 = 1
llama_model_loader: - kv 11: general.base_model.0.name str = Qwen3 4B
llama_model_loader: - kv 12: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 13: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen3-4B
llama_model_loader: - kv 14: general.tags arr[str,2] = ["unsloth", "text-generation"]
llama_model_loader: - kv 15: qwen3.block_count u32 = 36
llama_model_loader: - kv 16: qwen3.context_length u32 = 131072
llama_model_loader: - kv 17: qwen3.embedding_length u32 = 2560
llama_model_loader: - kv 18: qwen3.feed_forward_length u32 = 9728
llama_model_loader: - kv 19: qwen3.attention.head_count u32 = 32
llama_model_loader: - kv 20: qwen3.attention.head_count_kv u32 = 8
llama_model_loader: - kv 21: qwen3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 22: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 23: qwen3.attention.key_length u32 = 128
llama_model_loader: - kv 24: qwen3.attention.value_length u32 = 128
llama_model_loader: - kv 25: qwen3.rope.scaling.type str = yarn
llama_model_loader: - kv 26: qwen3.rope.scaling.factor f32 = 4.000000
llama_model_loader: - kv 27: qwen3.rope.scaling.original_context_length u32 = 32768
llama_model_loader: - kv 28: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 29: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 30: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 31: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 32: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 33: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 34: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 35: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 36: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 37: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 38: general.quantization_version u32 = 2
llama_model_loader: - kv 39: general.file_type u32 = 30
llama_model_loader: - kv 40: quantize.imatrix.file str = Qwen3-4B-128K-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 41: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-4B-128K.txt
llama_model_loader: - kv 42: quantize.imatrix.entries_count i32 = 252
llama_model_loader: - kv 43: quantize.imatrix.chunks_count i32 = 10
llama_model_loader: - type f32: 145 tensors
llama_model_loader: - type q5_K: 36 tensors
llama_model_loader: - type q6_K: 1 tensors
llama_model_loader: - type iq4_xs: 216 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = IQ4_XS - 4.25 bpw
print_info: file size = 2.11 GiB (4.50 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2560
print_info: n_layer = 36
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 9728
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = yarn
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 0.25
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 4B
print_info: model params = 4.02 B
print_info: general.name = Qwen3-4B-128K
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: CPU_Mapped model buffer size = 2159.88 MiB
.......................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 0.25
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.58 MiB
llama_kv_cache_unified: kv_size = 4096, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1, padding = 32
llama_kv_cache_unified: CPU KV buffer size = 576.00 MiB
llama_kv_cache_unified: KV self size = 576.00 MiB, K (f16): 288.00 MiB, V (f16): 288.00 MiB
llama_context: CPU compute buffer size = 301.75 MiB
llama_context: graph nodes = 1374
llama_context: graph splits = 578 (with bs=512), 1 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_model_loader: loaded meta data with 44 key-value pairs and 398 tensors from Qwen3-4B-128K-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen3-4B-128K
llama_model_loader: - kv 3: general.finetune str = 128k
llama_model_loader: - kv 4: general.basename str = Qwen3-4B-128K
llama_model_loader: - kv 5: general.quantized_by str = Unsloth
llama_model_loader: - kv 6: general.size_label str = 4B
llama_model_loader: - kv 7: general.license str = apache-2.0
llama_model_loader: - kv 8: general.license.link str = https://huggingface.co/Qwen/Qwen3-4B/...
llama_model_loader: - kv 9: general.repo_url str = https://huggingface.co/unsloth
llama_model_loader: - kv 10: general.base_model.count u32 = 1
llama_model_loader: - kv 11: general.base_model.0.name str = Qwen3 4B
llama_model_loader: - kv 12: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 13: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen3-4B
llama_model_loader: - kv 14: general.tags arr[str,2] = ["unsloth", "text-generation"]
llama_model_loader: - kv 15: qwen3.block_count u32 = 36
llama_model_loader: - kv 16: qwen3.context_length u32 = 131072
llama_model_loader: - kv 17: qwen3.embedding_length u32 = 2560
llama_model_loader: - kv 18: qwen3.feed_forward_length u32 = 9728
llama_model_loader: - kv 19: qwen3.attention.head_count u32 = 32
llama_model_loader: - kv 20: qwen3.attention.head_count_kv u32 = 8
llama_model_loader: - kv 21: qwen3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 22: qwen3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 23: qwen3.attention.key_length u32 = 128
llama_model_loader: - kv 24: qwen3.attention.value_length u32 = 128
llama_model_loader: - kv 25: qwen3.rope.scaling.type str = yarn
llama_model_loader: - kv 26: qwen3.rope.scaling.factor f32 = 4.000000
llama_model_loader: - kv 27: qwen3.rope.scaling.original_context_length u32 = 32768
llama_model_loader: - kv 28: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 29: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 30: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 31: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 32: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 33: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 34: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 35: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 36: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 37: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 38: general.quantization_version u32 = 2
llama_model_loader: - kv 39: general.file_type u32 = 2
llama_model_loader: - kv 40: quantize.imatrix.file str = Qwen3-4B-128K-GGUF/imatrix_unsloth.dat
llama_model_loader: - kv 41: quantize.imatrix.dataset str = unsloth_calibration_Qwen3-4B-128K.txt
llama_model_loader: - kv 42: quantize.imatrix.entries_count i32 = 252
llama_model_loader: - kv 43: quantize.imatrix.chunks_count i32 = 10
llama_model_loader: - type f32: 145 tensors
llama_model_loader: - type q4_0: 248 tensors
llama_model_loader: - type q4_1: 4 tensors
llama_model_loader: - type q6_K: 1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_0
print_info: file size = 2.21 GiB (4.71 BPW)
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch = qwen3
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2560
print_info: n_layer = 36
print_info: n_head = 32
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 4
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 9728
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = yarn
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 0.25
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 4B
print_info: model params = 4.02 B
print_info: general.name = Qwen3-4B-128K
print_info: vocab type = BPE
print_info: n_vocab = 151936
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151645 '<|im_end|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: CPU_Mapped model buffer size = 2246.67 MiB
load_tensors: CPU_KLEIDIAI model buffer size = 1895.62 MiB
........................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 0.25
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.58 MiB
llama_kv_cache_unified: kv_size = 4096, type_k = 'f16', type_v = 'f16', n_layer = 36, can_shift = 1, padding = 32
llama_kv_cache_unified: CPU KV buffer size = 576.00 MiB
llama_kv_cache_unified: KV self size = 576.00 MiB, K (f16): 288.00 MiB, V (f16): 288.00 MiB
llama_context: CPU compute buffer size = 301.75 MiB
llama_context: graph nodes = 1374
llama_context: graph splits = 82 (with bs=512), 1 (with bs=1)
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
/home/alerant/llama.cpp/src/llama-batch.cpp:282: GGML_ASSERT(batch.n_tokens > 0) failed
../build/bin/llama-speculative(+0x1bfcd4)[0xc69700a3fcd4]
../build/bin/llama-speculative(+0x1bfe9c)[0xc69700a3fe9c]
../build/bin/llama-speculative(+0xf15bc)[0xc697009715bc]
../build/bin/llama-speculative(+0xfc234)[0xc6970097c234]
../build/bin/llama-speculative(+0x22976c)[0xc69700aa976c]
../build/bin/llama-speculative(+0x224f0)[0xc697008a24f0]
/lib/aarch64-linux-gnu/libc.so.6(+0x284c4)[0xf5652a3d84c4]
/lib/aarch64-linux-gnu/libc.so.6(__libc_start_main+0x98)[0xf5652a3d8598]
../build/bin/llama-speculative(+0x2b3f0)[0xc697008ab3f0]
Aborted (core dumped)