Skip to content

Misc. bug: GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)) failed #13581

Open
@fo40225

Description

@fo40225

Name and Version

$ ~/llama.cpp/build/bin/llama-cli --version
version: 5390 (aa48e373)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

Operating systems

Linux

Which llama.cpp modules do you know to be affected?

llama-cli

Command line

numactl -i 0 -N 0 ~/llama.cpp/build/bin/llama-cli --numa numactl --no-mmap -fa -ctk q8_0 -ctv q8_0 -m unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF/Q4_K_M/Llama-4-Scout-17B-16E-Instruct-Q4_K_M-00001-of-00002.gguf -c 0 -sp -st

Problem description & steps to reproduce

When using the Llama-4-Scout-17B-16E-Instruct model, setting --ctx-size to 10485760 or 5242880 cause assert failed and hang. 2621440 is ok.

llama_kv_cache_unified: kv_size = 10485760, type_k = 'q8_0', type_v = 'q8_0', n_layer = 48, can_shift = 1, padding = 256
llama_kv_cache_unified:        CPU KV buffer size = 208896.00 MiB
llama_kv_cache_unified: KV self size  = 208896.00 MiB, K (q8_0): 104448.00 MiB, V (q8_0): 104448.00 MiB
/home/user/llama.cpp/ggml/src/ggml.c:1554: GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)) failed

llama_kv_cache_unified: kv_size = 5242880, type_k = 'q8_0', type_v = 'q8_0', n_layer = 48, can_shift = 1, padding = 256
llama_kv_cache_unified:        CPU KV buffer size = 104448.00 MiB
llama_kv_cache_unified: KV self size  = 104448.00 MiB, K (q8_0): 52224.00 MiB, V (q8_0): 52224.00 MiB
/home/user/llama.cpp/ggml/src/ggml.c:1554: GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)) failed

llama_kv_cache_unified: kv_size = 2621440, type_k = 'q8_0', type_v = 'q8_0', n_layer = 48, can_shift = 1, padding = 256
llama_kv_cache_unified:        CPU KV buffer size = 261120.00 MiB
llama_kv_cache_unified: KV self size  = 261120.00 MiB, K (q8_0): 130560.00 MiB, V (q8_0): 130560.00 MiB

First Bad Commit

No response

Relevant log output

$ numactl -i 0 -N 0 ~/llama.cpp/build/bin/llama-cli --numa numactl --no-mmap -fa -ctk q8_0 -ctv q8_0 -m unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF/Q4_K_M/Llama-4-Scout-17B-16E-Instruct-Q4_K_M-00001-of-00002.gguf -c 0 -sp -st
build: 5390 (aa48e373) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
main: llama backend init
/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance
main: load the model and apply lora adapter, if any
llama_model_loader: additional 1 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 51 key-value pairs and 628 tensors from unsloth/Llama-4-Scout-17B-16E-Instruct-GGUF/Q4_K_M/Llama-4-Scout-17B-16E-Instruct-Q4_K_M-00001-of-00002.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama4
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama-4-Scout-17B-16E-Instruct
llama_model_loader: - kv   3:                           general.finetune str              = 16E-Instruct
llama_model_loader: - kv   4:                           general.basename str              = Llama-4-Scout-17B-16E-Instruct
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 17B
llama_model_loader: - kv   7:                            general.license str              = other
llama_model_loader: - kv   8:                       general.license.name str              = llama4
llama_model_loader: - kv   9:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv  10:                   general.base_model.count u32              = 1
llama_model_loader: - kv  11:                  general.base_model.0.name str              = Llama 4 Scout 17B 16E Instruct
llama_model_loader: - kv  12:          general.base_model.0.organization str              = Meta Llama
llama_model_loader: - kv  13:              general.base_model.0.repo_url str              = https://huggingface.co/meta-llama/Lla...
llama_model_loader: - kv  14:                               general.tags arr[str,6]       = ["facebook", "unsloth", "meta", "pyto...
llama_model_loader: - kv  15:                          general.languages arr[str,12]      = ["ar", "de", "en", "es", "fr", "hi", ...
llama_model_loader: - kv  16:                         llama4.block_count u32              = 48
llama_model_loader: - kv  17:                      llama4.context_length u32              = 10485760
llama_model_loader: - kv  18:                    llama4.embedding_length u32              = 5120
llama_model_loader: - kv  19:                 llama4.feed_forward_length u32              = 16384
llama_model_loader: - kv  20:                llama4.attention.head_count u32              = 40
llama_model_loader: - kv  21:             llama4.attention.head_count_kv u32              = 8
llama_model_loader: - kv  22:                      llama4.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  23:    llama4.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  24:                        llama4.expert_count u32              = 16
llama_model_loader: - kv  25:                   llama4.expert_used_count u32              = 1
llama_model_loader: - kv  26:                llama4.attention.key_length u32              = 128
llama_model_loader: - kv  27:              llama4.attention.value_length u32              = 128
llama_model_loader: - kv  28:                          llama4.vocab_size u32              = 202048
llama_model_loader: - kv  29:                llama4.rope.dimension_count u32              = 128
llama_model_loader: - kv  30:           llama4.interleave_moe_layer_step u32              = 1
llama_model_loader: - kv  31:          llama4.expert_feed_forward_length u32              = 8192
llama_model_loader: - kv  32:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  33:                         tokenizer.ggml.pre str              = llama4
llama_model_loader: - kv  34:                      tokenizer.ggml.tokens arr[str,202048]  = ["À", "Á", "õ", "ö", "÷", "ø", ...
llama_model_loader: - kv  35:                  tokenizer.ggml.token_type arr[i32,202048]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  36:                      tokenizer.ggml.merges arr[str,439802]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  37:                tokenizer.ggml.bos_token_id u32              = 200000
llama_model_loader: - kv  38:                tokenizer.ggml.eos_token_id u32              = 200008
llama_model_loader: - kv  39:            tokenizer.ggml.padding_token_id u32              = 200018
llama_model_loader: - kv  40:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  41:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  42:               general.quantization_version u32              = 2
llama_model_loader: - kv  43:                          general.file_type u32              = 15
llama_model_loader: - kv  44:                      quantize.imatrix.file str              = Llama-4-Scout-17B-16E-Instruct-GGUF/i...
llama_model_loader: - kv  45:                   quantize.imatrix.dataset str              = unsloth_calibration_Llama-4-Scout-17B...
llama_model_loader: - kv  46:             quantize.imatrix.entries_count i32              = 528
llama_model_loader: - kv  47:              quantize.imatrix.chunks_count i32              = 59
llama_model_loader: - kv  48:                                   split.no u16              = 0
llama_model_loader: - kv  49:                        split.tensors.count i32              = 628
llama_model_loader: - kv  50:                                split.count u16              = 2
llama_model_loader: - type  f32:  146 tensors
llama_model_loader: - type q4_K:  409 tensors
llama_model_loader: - type q6_K:   73 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 60.86 GiB (4.85 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 1135
load: token to piece cache size = 1.3873 MB
print_info: arch             = llama4
print_info: vocab_only       = 0
print_info: n_ctx_train      = 10485760
print_info: n_embd           = 5120
print_info: n_layer          = 48
print_info: n_head           = 40
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 1
print_info: n_swa_pattern    = 4
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 5
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 16384
print_info: n_expert         = 16
print_info: n_expert_used    = 1
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 10485760
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 17Bx16E (Scout)
print_info: model params     = 107.77 B
print_info: general.name     = Llama-4-Scout-17B-16E-Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 202048
print_info: n_merges         = 439802
print_info: BOS token        = 200000 '<|begin_of_text|>'
print_info: EOS token        = 200008 '<|eot|>'
print_info: PAD token        = 200018 '<|finetune_right_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 200002 '<|fim_prefix|>'
print_info: FIM SUF token    = 200004 '<|fim_suffix|>'
print_info: FIM MID token    = 200003 '<|fim_middle|>'
print_info: EOG token        = 200008 '<|eot|>'
print_info: max token length = 192
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors:          CPU model buffer size = 14867.06 MiB
load_tensors:  CPU_AARCH64 model buffer size = 47452.50 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 10485760
llama_context: n_ctx_per_seq = 10485760
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 1
llama_context: freq_base     = 500000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     0.77 MiB
llama_kv_cache_unified: kv_size = 10485760, type_k = 'q8_0', type_v = 'q8_0', n_layer = 48, can_shift = 1, padding = 256
llama_kv_cache_unified:        CPU KV buffer size = 208896.00 MiB
llama_kv_cache_unified: KV self size  = 208896.00 MiB, K (q8_0): 104448.00 MiB, V (q8_0): 104448.00 MiB
/home/user/llama.cpp/ggml/src/ggml.c:1554: GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)) failed

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions