Skip to content

Scala to Python - sparkSql folder #2

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Sep 30, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions commons/Utils.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import re

class Utils():
COMMA_DELIMITER = re.compile(''',(?=(?:[^'"]|'[^']*'|"[^"]*")*$)''')
Copy link
Owner

@jleetutorial jleetutorial Sep 30, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why do we need to make this small change?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I made some changes to the original one in scala to run in python (because the languages parse regex in a different way), and among those changes I, mistakenly, made the new one not match commas within single quotations too. But this raised some problems when processing the stackoverflow survey. I just removed that.


COMMA_DELIMITER = re.compile(''',(?=(?:[^"]*"[^"]*")*[^"]*$)''')
6 changes: 0 additions & 6 deletions commons/Utils.scala

This file was deleted.

38 changes: 38 additions & 0 deletions sparkSql/HousePriceProblem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
if __name__ == "__main__":

'''
Create a Spark program to read the house data from in/RealEstate.csv,
group by location, aggregate the average price per SQ Ft and sort by average price per SQ Ft.

The houses dataset contains a collection of recent real estate listings in San Luis Obispo county and
around it. 

The dataset contains the following fields:
1. MLS: Multiple listing service number for the house (unique ID).
2. Location: city/town where the house is located. Most locations are in San Luis Obispo county and
northern Santa Barbara county (Santa Maria­Orcutt, Lompoc, Guadelupe, Los Alamos), but there
some out of area locations as well.
3. Price: the most recent listing price of the house (in dollars).
4. Bedrooms: number of bedrooms.
5. Bathrooms: number of bathrooms.
6. Size: size of the house in square feet.
7. Price/SQ.ft: price of the house per square foot.
8. Status: type of sale. Thee types are represented in the dataset: Short Sale, Foreclosure and Regular.

Each field is comma separated.

Sample output:

+----------------+-----------------+
| Location| avg(Price SQ Ft)|
+----------------+-----------------+
| Oceano| 95.0|
| Bradley| 206.0|
| San Luis Obispo| 359.0|
| Santa Ynez| 491.4|
| Cayucos| 887.0|
|................|.................|
|................|.................|
|................|.................|
'''

40 changes: 0 additions & 40 deletions sparkSql/HousePriceProblem.scala

This file was deleted.

17 changes: 17 additions & 0 deletions sparkSql/HousePriceSolution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
from pyspark.sql import SparkSession

PRICE_SQ_FT = "Price SQ Ft"

if __name__ == "__main__":

session = SparkSession.builder.appName("HousePriceSolution").master("local").getOrCreate()
session.sparkContext.setLogLevel("ERROR")
realEstate = session.read \
.option("header","true") \
.option("inferSchema", value=True) \
.csv("in/RealEstate.csv")

realEstate.groupBy("Location") \
.avg(PRICE_SQ_FT) \
.orderBy("avg(Price SQ FT)") \
.show()
25 changes: 0 additions & 25 deletions sparkSql/HousePriceSolution.scala

This file was deleted.

39 changes: 39 additions & 0 deletions sparkSql/RddDataframeConversion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
from pyspark.sql import SparkSession
from commons.Utils import Utils

def getColNames(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
return [splits[2], splits[6], splits[9], splits[14]]

def mapResponseRdd(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
double1 = None if not splits[6] else float(splits[6])
double2 = None if not splits[14] else float(splits[14])
return splits[2], double1, splits[9], double2

if __name__ == "__main__":

session = SparkSession.builder.appName("StackOverFlowSurvey").master("local").getOrCreate()
sc = session.sparkContext
sc.setLogLevel("ERROR")

lines = sc.textFile("in/2016-stack-overflow-survey-responses.csv")

colNames = lines \
.filter(lambda line: Utils.COMMA_DELIMITER.split(line)[2] == "country") \
.map(getColNames)

responseRDD = lines \
.filter(lambda line: not Utils.COMMA_DELIMITER.split(line)[2] == "country") \
.map(mapResponseRdd)

responseDataFrame = responseRDD.toDF(colNames.collect()[0])

print("=== Print out schema ===")
responseDataFrame.printSchema()

print("=== Print 20 records of responses table ===")
responseDataFrame.show(20)

for response in responseDataFrame.rdd.collect():
print(response)
42 changes: 0 additions & 42 deletions sparkSql/RddDatasetConversion.scala

This file was deleted.

3 changes: 0 additions & 3 deletions sparkSql/Response.scala

This file was deleted.

52 changes: 52 additions & 0 deletions sparkSql/StackOverFlowSurvey.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
from pyspark.sql import SparkSession

AGE_MIDPOINT = "age_midpoint"
SALARY_MIDPOINT = "salary_midpoint"
SALARY_MIDPOINT_BUCKET = "salary_midpoint_bucket"

if __name__ == "__main__":

session = SparkSession.builder.appName("StackOverFlowSurvey").master("local").getOrCreate()
session.sparkContext.setLogLevel("ERROR")
dataFrameReader = session.read

responses = dataFrameReader \
.option("header", "true") \
.option("inferSchema", value = True) \
.csv("in/2016-stack-overflow-survey-responses.csv")

print("=== Print out schema ===")
responses.printSchema()

responseWithSelectedColumns = responses.select("country", "occupation", AGE_MIDPOINT, SALARY_MIDPOINT)

print("=== Print the selected columns of the table ===")
responseWithSelectedColumns.show()

print("=== Print records where the response is from Afghanistan ===")
responseWithSelectedColumns.filter(responseWithSelectedColumns["country"] == "Afghanistan").show()

print("=== Print the count of occupations ===")
groupedDataset = responseWithSelectedColumns.groupBy("occupation")
groupedDataset.count().show()

print("=== Print records with average mid age less than 20 ===")
responseWithSelectedColumns.filter(responseWithSelectedColumns[AGE_MIDPOINT] < 20).show()

print("=== Print the result by salary middle point in descending order ===")
responseWithSelectedColumns.orderBy(responseWithSelectedColumns[SALARY_MIDPOINT], ascending=False).show()

print("=== Group by country and aggregate by average salary middle point ===")
datasetGroupByCountry = responseWithSelectedColumns.groupBy("country")
datasetGroupByCountry.avg(SALARY_MIDPOINT).show()

responseWithSalaryBucket = responses.withColumn(SALARY_MIDPOINT_BUCKET,
((responses[SALARY_MIDPOINT]/20000).cast("integer")*20000))

print("=== With salary bucket column ===")
responseWithSalaryBucket.select(SALARY_MIDPOINT, SALARY_MIDPOINT_BUCKET).show()

print("=== Group by salary bucket ===")
responseWithSalaryBucket.groupBy(SALARY_MIDPOINT_BUCKET).count().orderBy(SALARY_MIDPOINT_BUCKET).show()

session.stop()
60 changes: 0 additions & 60 deletions sparkSql/StackOverFlowSurvey.scala

This file was deleted.

55 changes: 0 additions & 55 deletions sparkSql/TypedDataset.scala

This file was deleted.

Loading