Skip to content

Added sys path to guarantee imports | Added SparkConf to all files #7

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Feb 4, 2018
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 14 additions & 15 deletions advanced/accumulator/StackOverFlowSurvey.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,24 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def filterResponseFromCanada(response, total, missingSalaryMidPoint):
splits = Utils.COMMA_DELIMITER.split(response)
total.add(1)
if not splits[14]:
missingSalaryMidPoint.add(1)
return splits[2] == "Canada"

if __name__ == "__main__":
sc = SparkContext("local", "StackOverFlowSurvey")
sc.setLogLevel("ERROR")

conf = SparkConf().setAppName('StackOverFlowSurvey').setMaster("local[*]")
sc = SparkContext(conf = conf)
total = sc.accumulator(0)
missingSalaryMidPoint = sc.accumulator(0)

responseRDD = sc.textFile("in/2016-stack-overflow-survey-responses.csv")

responseFromCanada = responseRDD.filter(lambda response: \
filterResponseFromCanada(response, total, missingSalaryMidPoint))
def filterResponseFromCanada(response):
splits = Utils.COMMA_DELIMITER.split(response)
total.add(1)
if not splits[14]:
missingSalaryMidPoint.add(1)
return splits[2] == "Canada"

responseFromCanada = responseRDD.filter(filterResponseFromCanada)
print("Count of responses from Canada: {}".format(responseFromCanada.count()))
print("Total count of responses: {}".format(total.value))
print("Count of responses missing salary middle point: {}".format(missingSalaryMidPoint.value))
print("Count of responses missing salary middle point: {}" \
.format(missingSalaryMidPoint.value))
27 changes: 13 additions & 14 deletions advanced/accumulator/StackOverFlowSurveyFollowUp.py
Original file line number Diff line number Diff line change
@@ -1,26 +1,25 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def filterResponseFromCanada(response, total, missingSalaryMidPoint, processedBytes):
processedBytes.add(len(response.encode('utf-8')))
splits = Utils.COMMA_DELIMITER.split(response)
total.add(1)
if not splits[14]:
missingSalaryMidPoint.add(1)
return splits[2] == "Canada"

if __name__ == "__main__":
sc = SparkContext("local", "StackOverFlowSurvey")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName('StackOverFlowSurvey').setMaster("local[*]")
sc = SparkContext(conf = conf)

total = sc.accumulator(0)
missingSalaryMidPoint = sc.accumulator(0)
processedBytes = sc.accumulator(0)

responseRDD = sc.textFile("in/2016-stack-overflow-survey-responses.csv")

responseFromCanada = responseRDD.filter(lambda response: \
filterResponseFromCanada(response, total, missingSalaryMidPoint, processedBytes))
def filterResponseFromCanada(response):
processedBytes.add(len(response.encode('utf-8')))
splits = Utils.COMMA_DELIMITER.split(response)
total.add(1)
if not splits[14]:
missingSalaryMidPoint.add(1)
return splits[2] == "Canada"
responseFromCanada = responseRDD.filter(filterResponseFromCanada)

print("Count of responses from Canada: {}".format(responseFromCanada.count()))
print("Number of bytes processed: {}".format(processedBytes.value))
Expand Down
18 changes: 10 additions & 8 deletions advanced/broadcast/UkMakerSpaces.py
Original file line number Diff line number Diff line change
@@ -1,19 +1,21 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def getPostPrefix(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
postcode = splits[4]
return None if not postcode else postcode.split(" ")[0]

def loadPostCodeMap():
lines = open("in/uk-postcode.csv", "r").read().split("\n")
splitsForLines = [Utils.COMMA_DELIMITER.split(line) for line in lines if line != ""]
return {splits[0]: splits[7] for splits in splitsForLines}

def getPostPrefix(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
postcode = splits[4]
return None if not postcode else postcode.split(" ")[0]

if __name__ == "__main__":
sc = SparkContext("local", "UkMakerSpaces")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName('UkMakerSpaces').setMaster("local[*]")
sc = SparkContext(conf = conf)

postCodeMap = sc.broadcast(loadPostCodeMap())

Expand Down
22 changes: 12 additions & 10 deletions advanced/broadcast/UkMakerSpacesWithoutBroadcast.py
Original file line number Diff line number Diff line change
@@ -1,26 +1,28 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def getPostPrefixes(line: str):
postcode = Utils.COMMA_DELIMITER.split(line)[4]
cleanedPostCode = postcode.replace("\\s+", "")
return [cleanedPostCode[0:i] for i in range(0,len(cleanedPostCode)+1)]

def loadPostCodeMap():
lines = open("in/uk-postcode.csv", "r").read().split("\n")
splitsForLines = [Utils.COMMA_DELIMITER.split(line) for line in lines if line != ""]
return {splits[0]: splits[7] for splits in splitsForLines}

def getPostPrefix(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
postcode = splits[4]
return None if not postcode else postcode.split(" ")[0]

if __name__ == "__main__":
sc = SparkContext("local", "UkMakerSpaces")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName('UkMakerSpaces').setMaster("local[*]")
sc = SparkContext(conf = conf)
postCodeMap = loadPostCodeMap()
makerSpaceRdd = sc.textFile("in/uk-makerspaces-identifiable-data.csv")

regions = makerSpaceRdd \
.filter(lambda line: Utils.COMMA_DELIMITER.split(line)[0] != "Timestamp") \
.map(lambda line: next((postCodeMap[prefix] for prefix in getPostPrefixes(line) \
if prefix in postCodeMap), "Unknow"))
.map(lambda line: postCodeMap[getPostPrefix(line)] \
if getPostPrefix(line) in postCodeMap else "Unknow")

for region, count in regions.countByValue().items():
print("{} : {}".format(region, count))
7 changes: 3 additions & 4 deletions pairRdd/aggregation/combinebykey/AverageHousePriceSolution.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
from pyspark import SparkContext
from pyspark import SparkContext, SparkConf

if __name__ == "__main__":

sc = SparkContext("local", "AverageHousePrice")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("AverageHousePrice").setMaster("local")
sc = SparkContext(conf = conf)

lines = sc.textFile("in/RealEstate.csv")
cleanedLines = lines.filter(lambda line: "Bedrooms" not in line)
Expand Down
Original file line number Diff line number Diff line change
@@ -1,24 +1,26 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from pairRdd.aggregation.reducebykey.housePrice.AvgCount import AvgCount

if __name__ == "__main__":

sc = SparkContext("local", "avgHousePrice")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("avgHousePrice").setMaster("local[3]")
sc = SparkContext(conf = conf)

lines = sc.textFile("in/RealEstate.csv")
cleanedLines = lines.filter(lambda line: "Bedrooms" not in line)

housePricePairRdd = cleanedLines.map(lambda line: \
(line.split(",")[3], (1, float(line.split(",")[2]))))
(line.split(",")[3], AvgCount(1, float(line.split(",")[2]))))

housePriceTotal = housePricePairRdd \
.reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))
.reduceByKey(lambda x, y: AvgCount(x.count + y.count, x.total + y.total))

print("housePriceTotal: ")
for bedroom, total in housePriceTotal.collect():
print("{} : {}".format(bedroom, total))
for bedroom, avgCount in housePriceTotal.collect():
print("{} : ({}, {})".format(bedroom, avgCount.count, avgCount.total))

housePriceAvg = housePriceTotal.mapValues(lambda avgCount: avgCount[1] / avgCount[0])
housePriceAvg = housePriceTotal.mapValues(lambda avgCount: avgCount.total / avgCount.count)
print("\nhousePriceAvg: ")
for bedroom, avg in housePriceAvg.collect():
print("{} : {}".format(bedroom, avg))
8 changes: 5 additions & 3 deletions pairRdd/filter/AirportsNotInUsaSolution.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

if __name__ == "__main__":

sc = SparkContext("local", "airports")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("airports").setMaster("local[*]")
sc = SparkContext(conf = conf)

airportsRDD = sc.textFile("in/airports.text")

Expand Down
10 changes: 6 additions & 4 deletions pairRdd/groupbykey/AirportsByCountrySolution.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

if __name__ == "__main__":

sc = SparkContext("local", "airports")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("airports").setMaster("local[*]")
sc = SparkContext(conf = conf)

lines = sc.textFile("in/airports.text")

Expand All @@ -15,4 +17,4 @@
airportsByCountry = countryAndAirportNameAndPair.groupByKey()

for country, airportName in airportsByCountry.collectAsMap().items():
print("{}: {}".format(country,list(airportName)))
print("{}: {}".format(country, list(airportName)))
9 changes: 5 additions & 4 deletions pairRdd/mapValues/AirportsUppercaseSolution.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

if __name__ == "__main__":

sc = SparkContext("local", "airports")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("airports").setMaster("local[*]")
sc = SparkContext(conf = conf)

airportsRDD = sc.textFile("in/airports.text")

Expand Down
10 changes: 5 additions & 5 deletions pairRdd/sort/AverageHousePriceSolution.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
import sys
sys.path.insert(0, '.')
from pairRdd.aggregation.reducebykey.housePrice.AvgCount import AvgCount
from pyspark import SparkContext

from pyspark import SparkContext, SparkConf

if __name__ == "__main__":

sc = SparkContext("local", "averageHousePriceSolution")
sc.setLogLevel("ERROR")
conf = SparkConf().setAppName("averageHousePriceSolution").setMaster("local[*]")
sc = SparkContext(conf = conf)

lines = sc.textFile("in/RealEstate.csv")
cleanedLines = lines.filter(lambda line: "Bedrooms" not in line)
Expand Down
7 changes: 5 additions & 2 deletions rdd/airports/AirportsByLatitudeSolution.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,15 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def splitComma(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
return "{}, {}".format(splits[1], splits[6])

if __name__ == "__main__":
sc = SparkContext("local", "airports")
conf = SparkConf().setAppName("airports").setMaster("local[*]")
sc = SparkContext(conf = conf)

airports = sc.textFile("in/airports.text")

Expand Down
7 changes: 5 additions & 2 deletions rdd/airports/AirportsInUsaSolution.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,15 @@
from pyspark import SparkContext
import sys
sys.path.insert(0, '.')
from pyspark import SparkContext, SparkConf
from commons.Utils import Utils

def splitComma(line: str):
splits = Utils.COMMA_DELIMITER.split(line)
return "{}, {}".format(splits[1], splits[2])

if __name__ == "__main__":
sc = SparkContext("local", "airports")
conf = SparkConf().setAppName("airports").setMaster("local[*]")
sc = SparkContext(conf = conf)

airports = sc.textFile("in/airports.text")
airportsInUSA = airports.filter(lambda line : Utils.COMMA_DELIMITER.split(line)[3] == "\"United States\"")
Expand Down
3 changes: 3 additions & 0 deletions rdd/count/CountExample.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,12 @@
if __name__ == "__main__":
conf = SparkConf().setAppName("count").setMaster("local[*]")
sc = SparkContext(conf = conf)

inputWords = ["spark", "hadoop", "spark", "hive", "pig", "cassandra", "hadoop"]

wordRdd = sc.parallelize(inputWords)
print("Count: {}".format(wordRdd.count()))

worldCountByValue = wordRdd.countByValue()
print("CountByValue: ")
for word, count in worldCountByValue.items():
Expand Down
13 changes: 7 additions & 6 deletions sparkSql/HousePriceProblem.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,20 +4,21 @@
Create a Spark program to read the house data from in/RealEstate.csv,
group by location, aggregate the average price per SQ Ft and sort by average price per SQ Ft.

The houses dataset contains a collection of recent real estate listings in San Luis Obispo county and
around it. 
The houses dataset contains a collection of recent real estate listings in 
San Luis Obispo county and around it. 

The dataset contains the following fields:
1. MLS: Multiple listing service number for the house (unique ID).
2. Location: city/town where the house is located. Most locations are in San Luis Obispo county and
northern Santa Barbara county (Santa Maria­Orcutt, Lompoc, Guadelupe, Los Alamos), but there
some out of area locations as well.
2. Location: city/town where the house is located. Most locations are in 
San Luis Obispo county and northern Santa Barbara county (Santa Maria­Orcutt, Lompoc, 
Guadelupe, Los Alamos), but there some out of area locations as well.
3. Price: the most recent listing price of the house (in dollars).
4. Bedrooms: number of bedrooms.
5. Bathrooms: number of bathrooms.
6. Size: size of the house in square feet.
7. Price/SQ.ft: price of the house per square foot.
8. Status: type of sale. Thee types are represented in the dataset: Short Sale, Foreclosure and Regular.
8. Status: type of sale. Thee types are represented in the dataset: Short Sale, 
Foreclosure and Regular.

Each field is comma separated.

Expand Down
4 changes: 2 additions & 2 deletions sparkSql/HousePriceSolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@

if __name__ == "__main__":

session = SparkSession.builder.appName("HousePriceSolution").master("local").getOrCreate()
session.sparkContext.setLogLevel("ERROR")
session = SparkSession.builder.appName("HousePriceSolution").master("local[*]").getOrCreate()

realEstate = session.read \
.option("header","true") \
.option("inferSchema", value=True) \
Expand Down
Loading