Skip to content

Fixes: #12108: Add Ridge regression implementation to machine_learning #12251

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 22 commits into from
Closed
Changes from 1 commit
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
added ridge regression
  • Loading branch information
ankana2113 committed Oct 23, 2024
commit b72320b402ed135d9354a23daa93289665bbbc4c
95 changes: 20 additions & 75 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
@@ -1,112 +1,57 @@
import numpy as np

Check failure on line 1 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (INP001)

machine_learning/ridge_regression/model.py:1:1: INP001 File `machine_learning/ridge_regression/model.py` is part of an implicit namespace package. Add an `__init__.py`.

"""# Ridge Regression Class
class RidgeRegression:
def __init__(self, learning_rate=0.01, num_iterations=1000, regularization_param=0.1):
self.learning_rate = learning_rate
self.num_iterations = num_iterations
self.regularization_param = regularization_param
self.weights = None
self.bias = None

def fit(self, X, y):
n_samples, n_features = X.shape

# initializing weights and bias
self.weights = np.zeros(n_features)
self.bias = 0

# gradient descent
for _ in range(self.num_iterations):
y_predicted = np.dot(X, self.weights) + self.bias

# gradients for weights and bias
dw = (1/n_samples) * np.dot(X.T, (y_predicted - y)) + (self.regularization_param / n_samples) * self.weights
db = (1/n_samples) * np.sum(y_predicted - y)

# updating weights and bias
self.weights -= self.learning_rate * dw
self.bias -= self.learning_rate * db

def predict(self, X):
return np.dot(X, self.weights) + self.bias

def mean_absolute_error(self, y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))

# Load Data Function
def load_data(file_path):
data = []
with open(file_path, 'r') as file:
for line in file.readlines()[1:]:
features = line.strip().split(',')
data.append([float(f) for f in features])
return np.array(data)

# Example usage
if __name__ == "__main__":

data = load_data('ADRvsRating.csv')
X = data[:, 0].reshape(-1, 1) # independent features
y = data[:, 1] # dependent variable

# initializing and training Ridge Regression model
model = RidgeRegression(learning_rate=0.001, num_iterations=1000, regularization_param=0.1)
model.fit(X, y)

# predictions
predictions = model.predict(X)

# mean absolute error
mae = model.mean_absolute_error(y, predictions)
print(f"Mean Absolute Error: {mae}")

# final output weights and bias
print(f"Optimized Weights: {model.weights}")
print(f"Bias: {model.bias}")"""

import pandas as pd

class RidgeRegression:

Check failure on line 4 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (I001)

machine_learning/ridge_regression/model.py:1:1: I001 Import block is un-sorted or un-formatted
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
self.alpha = alpha
self.lambda_ = lambda_
self.iterations = iterations
self.regularization_param = regularization_param
self.num_iterations = num_iterations
self.theta = None


def feature_scaling(self, X):

Check failure on line 12 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:12:31: N803 Argument name `X` should be lowercase
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

Check failure on line 15 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (W293)

machine_learning/ridge_regression/model.py:15:1: W293 Blank line contains whitespace
# avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # set std=1 for constant features to avoid NaN

Check failure on line 18 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (W293)

machine_learning/ridge_regression/model.py:18:1: W293 Blank line contains whitespace
X_scaled = (X - mean) / std

Check failure on line 19 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:19:9: N806 Variable `X_scaled` in function should be lowercase
return X_scaled, mean, std

Check failure on line 21 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (W293)

machine_learning/ridge_regression/model.py:21:1: W293 Blank line contains whitespace

def fit(self, X, y):

Check failure on line 23 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:23:19: N803 Argument name `X` should be lowercase
X_scaled, mean, std = self.feature_scaling(X)

Check failure on line 24 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:24:9: N806 Variable `X_scaled` in function should be lowercase
m, n = X_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros
for i in range(self.iterations):

Check failure on line 27 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (W293)

machine_learning/ridge_regression/model.py:27:1: W293 Blank line contains whitespace
for i in range(self.num_iterations):
predictions = X_scaled.dot(self.theta)
error = predictions - y

# computing gradient with L2 regularization
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m
self.theta -= self.alpha * gradient # updating weights


def predict(self, X):
X_scaled, _, _ = self.feature_scaling(X)
return X_scaled.dot(self.theta)


def compute_cost(self, X, y):
X_scaled, _, _ = self.feature_scaling(X)
m = len(y)

predictions = X_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.lambda_ / (2 * m)
) * np.sum(self.theta**2)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2)
return cost


def mean_absolute_error(self, y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))


# Example usage
if __name__ == "__main__":
df = pd.read_csv("ADRvsRating.csv")
Expand All @@ -118,7 +63,7 @@
X = np.c_[np.ones(X.shape[0]), X]

# initialize and train the Ridge Regression model
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
model.fit(X, y)

# predictions
Expand Down