Skip to content

Fixes issue #12233: Avoid log(0) in KL, ruff and build checks #12263

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 33 commits into
base: master
Choose a base branch
from
Open
Changes from 1 commit
Commits
Show all changes
33 commits
Select commit Hold shift + click to select a range
1cb79bc
added ridge regression
ankana2113 Oct 23, 2024
b72320b
added ridge regression
ankana2113 Oct 23, 2024
d4fc2bf
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 23, 2024
a84d209
added ridge regression
ankana2113 Oct 23, 2024
6fc134d
added ridge regression
ankana2113 Oct 23, 2024
21fe32f
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 23, 2024
7484cda
ridge regression
ankana2113 Oct 23, 2024
b1353dd
ridge regression
ankana2113 Oct 23, 2024
2eeb450
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 23, 2024
1713cbe
resolved errors
ankana2113 Oct 23, 2024
3876437
resolved conflicts
ankana2113 Oct 23, 2024
c76784e
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 23, 2024
544a38b
resolved conflicts
ankana2113 Oct 23, 2024
d5963b2
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 23, 2024
b0255a8
added doctests
ankana2113 Oct 24, 2024
d8c0b7c
Merge branch 'main' of https://github.com/ankana2113/Python
ankana2113 Oct 24, 2024
59d3ceb
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] Oct 24, 2024
83d7252
ruff and minor checks
ankana2113 Oct 24, 2024
1918aac
Merge branch 'main' of https://github.com/ankana2113/Python
ankana2113 Oct 24, 2024
f614b2e
minor chenges
ankana2113 Oct 24, 2024
254b9bf
minor checks
ankana2113 Oct 24, 2024
97eb853
minor checks
ankana2113 Oct 24, 2024
dcf47d4
minor changes
ankana2113 Oct 24, 2024
0ea341a
descriptive names
ankana2113 Oct 24, 2024
1ff7975
Fix ruff check in loss_functions.py
ankana2113 Oct 24, 2024
1459adf
fixed pre-commit issues
ankana2113 Oct 24, 2024
0c04372
Merge pull request #1 from ankana2113/main
ankana2113 Oct 24, 2024
5c2d1fe
added largest rectangle histogram function
ankana2113 Oct 24, 2024
50d5bb1
added largest rectangle histogram function
ankana2113 Oct 24, 2024
d029119
Merge branch 'master' of https://github.com/ankana2113/Python
ankana2113 Oct 24, 2024
b00284f
Merge branch 'largest_rect'
ankana2113 Oct 24, 2024
bfb8167
added kadane's algo
ankana2113 Oct 24, 2024
91f0395
Merge pull request #2 from ankana2113/kadane_algo
ankana2113 Oct 24, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
added ridge regression
  • Loading branch information
ankana2113 committed Oct 23, 2024
commit a84d209c083cfafa0124fd0b7cc21c83fac28116
24 changes: 12 additions & 12 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,14 @@
import pandas as pd

class RidgeRegression:
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
self.alpha = alpha
self.regularization_param = regularization_param
self.num_iterations = num_iterations
self.theta = None
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
self.alpha:float = alpha
self.regularization_param:float = regularization_param
self.num_iterations:int = num_iterations
self.theta:np.ndarray = None


def feature_scaling(self, X):
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

Expand All @@ -20,7 +20,7 @@ def feature_scaling(self, X):
return X_scaled, mean, std


def fit(self, X, y):
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
X_scaled, mean, std = self.feature_scaling(X)
m, n = X_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros
Expand All @@ -34,12 +34,12 @@ def fit(self, X, y):
self.theta -= self.alpha * gradient # updating weights


def predict(self, X):
def predict(self, X:np.ndarray) -> np.ndarray:
X_scaled, _, _ = self.feature_scaling(X)
return X_scaled.dot(self.theta)


def compute_cost(self, X, y):
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
X_scaled, _, _ = self.feature_scaling(X)
m = len(y)

Expand All @@ -48,7 +48,7 @@ def compute_cost(self, X, y):
return cost


def mean_absolute_error(self, y_true, y_pred):
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
return np.mean(np.abs(y_true - y_pred))


Expand All @@ -59,10 +59,10 @@ def mean_absolute_error(self, y_true, y_pred):
y = df["ADR"].values
y = (y - np.mean(y)) / np.std(y)

# Add bias term (intercept) to the feature matrix
# added bias term to the feature matrix
X = np.c_[np.ones(X.shape[0]), X]

# initialize and train the Ridge Regression model
# initialize and train the ridge regression model
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
model.fit(X, y)

Expand Down