Skip to content

Fixes #12108 : Ridge regression #12108 #12257

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 22 commits into from
Closed
Changes from 2 commits
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 22 additions & 24 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,33 +3,34 @@


class RidgeRegression:
def __init__(self,
alpha:float=0.001,
regularization_param:float=0.1,
num_iterations:int=1000) -> None:
self.alpha:float = alpha
self.regularization_param:float = regularization_param
self.num_iterations:int = num_iterations
self.theta:np.ndarray = None


def feature_scaling(self, x:np.ndarray)-> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(x, axis=0)
std = np.std(x, axis=0)
def __init__(self,
alpha: float = 0.001,
regularization_param: float = 0.1,
num_iterations: int = 1000,
) -> None:
self.alpha: float = alpha
self.regularization_param: float = regularization_param
self.num_iterations: int = num_iterations
self.theta: np.ndarray = None

def feature_scaling(
self, X: np.ndarray

Check failure on line 17 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:17:15: N803 Argument name `X` should be lowercase
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

# avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # set std=1 for constant features to avoid NaN

x_scaled = (x - mean) / std
return x_scaled, mean, std


def fit(self, x:np.ndarray, y:np.ndarray) -> None:
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
x_scaled, mean, std = self.feature_scaling(x)
m, n = x_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros

for i in range(self.num_iterations):

Check failure on line 33 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (B007)

machine_learning/ridge_regression/model.py:33:13: B007 Loop control variable `i` not used within loop body
predictions = x_scaled.dot(self.theta)
error = predictions - y

Expand All @@ -39,13 +40,11 @@
) / m
self.theta -= self.alpha * gradient # updating weights

def predict(self, X: np.ndarray) -> np.ndarray:

Check failure on line 43 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:43:23: N803 Argument name `X` should be lowercase
X_scaled, _, _ = self.feature_scaling(X)

Check failure on line 44 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:44:9: N806 Variable `X_scaled` in function should be lowercase
return X_scaled.dot(self.theta)

def predict(self, x:np.ndarray) -> np.ndarray:
x_scaled, _, _ = self.feature_scaling(x)
return x_scaled.dot(self.theta)


def compute_cost(self, x:np.ndarray, y:np.ndarray) -> float:
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
x_scaled, _, _ = self.feature_scaling(x)
m = len(y)

Expand All @@ -56,20 +55,19 @@
) * np.sum(self.theta**2)
return cost


def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
return np.mean(np.abs(y_true - y_pred))


# Example usage
if __name__ == "__main__":
df = pd.read_csv("ADRvsRating.csv")

Check failure on line 64 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD901)

machine_learning/ridge_regression/model.py:64:5: PD901 Avoid using the generic variable name `df` for DataFrames
x = df[["Rating"]].values

Check failure on line 65 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD011)

machine_learning/ridge_regression/model.py:65:9: PD011 Use `.to_numpy()` instead of `.values`
y = df["ADR"].values

Check failure on line 66 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD011)

machine_learning/ridge_regression/model.py:66:9: PD011 Use `.to_numpy()` instead of `.values`
y = (y - np.mean(y)) / np.std(y)

# added bias term to the feature matrix
x = np.c_[np.ones(x.shape[0]), x]
x = np.c_[np.ones(x.shape[0]), x]

# initialize and train the ridge regression model
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
Expand Down
Loading