Skip to content

Fixes #12108 : Ridge regression #12108 #12257

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 22 commits into from
Closed
Changes from 1 commit
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
added ridge regression
  • Loading branch information
ankana2113 committed Oct 23, 2024
commit a84d209c083cfafa0124fd0b7cc21c83fac28116
24 changes: 12 additions & 12 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,14 @@
import pandas as pd

class RidgeRegression:
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
self.alpha = alpha
self.regularization_param = regularization_param
self.num_iterations = num_iterations
self.theta = None
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
self.alpha:float = alpha
self.regularization_param:float = regularization_param
self.num_iterations:int = num_iterations
self.theta:np.ndarray = None


def feature_scaling(self, X):
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

Expand All @@ -20,7 +20,7 @@ def feature_scaling(self, X):
return X_scaled, mean, std


def fit(self, X, y):
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
X_scaled, mean, std = self.feature_scaling(X)
m, n = X_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros
Expand All @@ -34,12 +34,12 @@ def fit(self, X, y):
self.theta -= self.alpha * gradient # updating weights


def predict(self, X):
def predict(self, X:np.ndarray) -> np.ndarray:
X_scaled, _, _ = self.feature_scaling(X)
return X_scaled.dot(self.theta)


def compute_cost(self, X, y):
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
X_scaled, _, _ = self.feature_scaling(X)
m = len(y)

Expand All @@ -48,7 +48,7 @@ def compute_cost(self, X, y):
return cost


def mean_absolute_error(self, y_true, y_pred):
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
return np.mean(np.abs(y_true - y_pred))


Expand All @@ -59,10 +59,10 @@ def mean_absolute_error(self, y_true, y_pred):
y = df["ADR"].values
y = (y - np.mean(y)) / np.std(y)

# Add bias term (intercept) to the feature matrix
# added bias term to the feature matrix
X = np.c_[np.ones(X.shape[0]), X]

# initialize and train the Ridge Regression model
# initialize and train the ridge regression model
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
model.fit(X, y)

Expand Down