Skip to content

Fixes #12108 : Ridge regression #12108 #12257

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 22 commits into from
Closed
Changes from 1 commit
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
  • Loading branch information
pre-commit-ci[bot] committed Oct 23, 2024
commit d4fc2bf852ec4a023380f4ef367edefa88fd6881
32 changes: 16 additions & 16 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
@@ -1,56 +1,56 @@
import numpy as np

Check failure on line 1 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (INP001)

machine_learning/ridge_regression/model.py:1:1: INP001 File `machine_learning/ridge_regression/model.py` is part of an implicit namespace package. Add an `__init__.py`.
import pandas as pd


class RidgeRegression:
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
self.alpha = alpha
self.regularization_param = regularization_param
self.num_iterations = num_iterations
self.theta = None


def feature_scaling(self, X):

Check failure on line 12 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:12:31: N803 Argument name `X` should be lowercase
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)

# avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # set std=1 for constant features to avoid NaN

X_scaled = (X - mean) / std

Check failure on line 19 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:19:9: N806 Variable `X_scaled` in function should be lowercase
return X_scaled, mean, std


def fit(self, X, y):

Check failure on line 22 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:22:19: N803 Argument name `X` should be lowercase
X_scaled, mean, std = self.feature_scaling(X)

Check failure on line 23 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:23:9: N806 Variable `X_scaled` in function should be lowercase
m, n = X_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros

for i in range(self.num_iterations):

Check failure on line 27 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (B007)

machine_learning/ridge_regression/model.py:27:13: B007 Loop control variable `i` not used within loop body
predictions = X_scaled.dot(self.theta)
error = predictions - y

# computing gradient with L2 regularization
gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m
gradient = (
X_scaled.T.dot(error) + self.regularization_param * self.theta
) / m
self.theta -= self.alpha * gradient # updating weights


def predict(self, X):

Check failure on line 37 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:37:23: N803 Argument name `X` should be lowercase
X_scaled, _, _ = self.feature_scaling(X)

Check failure on line 38 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:38:9: N806 Variable `X_scaled` in function should be lowercase
return X_scaled.dot(self.theta)


def compute_cost(self, X, y):

Check failure on line 41 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:41:28: N803 Argument name `X` should be lowercase
X_scaled, _, _ = self.feature_scaling(X)
X_scaled, _, _ = self.feature_scaling(X)

Check failure on line 42 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:42:9: N806 Variable `X_scaled` in function should be lowercase
m = len(y)

predictions = X_scaled.dot(self.theta)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.regularization_param / (2 * m)
) * np.sum(self.theta**2)
return cost


def mean_absolute_error(self, y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))


# Example usage
if __name__ == "__main__":
Expand All @@ -60,7 +60,7 @@
y = (y - np.mean(y)) / np.std(y)

# Add bias term (intercept) to the feature matrix
X = np.c_[np.ones(X.shape[0]), X]
X = np.c_[np.ones(X.shape[0]), X]

# initialize and train the Ridge Regression model
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
Expand All @@ -72,4 +72,4 @@
# results
print("Optimized Weights:", model.theta)
print("Cost:", model.compute_cost(X, y))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))