Skip to content

Fixes #12108 : Ridge regression #12108 #12257

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 22 commits into from
Closed
Changes from 1 commit
Commits
Show all changes
22 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
  • Loading branch information
pre-commit-ci[bot] committed Oct 23, 2024
commit c76784e7084f514dd7cd44698f57bbb720c7ebdc
18 changes: 9 additions & 9 deletions machine_learning/ridge_regression/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,19 @@


class RidgeRegression:
def __init__(self,
alpha: float = 0.001,
regularization_param: float = 0.1,
num_iterations: int = 1000,
) -> None:
def __init__(
self,
alpha: float = 0.001,
regularization_param: float = 0.1,
num_iterations: int = 1000,
) -> None:
self.alpha: float = alpha
self.regularization_param: float = regularization_param
self.num_iterations: int = num_iterations
self.theta: np.ndarray = None

def feature_scaling(
self, X: np.ndarray

Check failure on line 18 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:18:15: N803 Argument name `X` should be lowercase
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
Expand All @@ -30,7 +31,7 @@
m, n = x_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros

for i in range(self.num_iterations):

Check failure on line 34 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (B007)

machine_learning/ridge_regression/model.py:34:13: B007 Loop control variable `i` not used within loop body
predictions = x_scaled.dot(self.theta)
error = predictions - y

Expand All @@ -40,8 +41,8 @@
) / m
self.theta -= self.alpha * gradient # updating weights

def predict(self, X: np.ndarray) -> np.ndarray:

Check failure on line 44 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N803)

machine_learning/ridge_regression/model.py:44:23: N803 Argument name `X` should be lowercase
X_scaled, _, _ = self.feature_scaling(X)

Check failure on line 45 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (N806)

machine_learning/ridge_regression/model.py:45:9: N806 Variable `X_scaled` in function should be lowercase
return X_scaled.dot(self.theta)

def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
Expand All @@ -49,10 +50,9 @@
m = len(y)

predictions = x_scaled.dot(self.theta)
cost = (
1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.regularization_param / (2 * m)
) * np.sum(self.theta**2)
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
self.regularization_param / (2 * m)
) * np.sum(self.theta**2)
return cost

def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
Expand All @@ -61,9 +61,9 @@

# Example usage
if __name__ == "__main__":
df = pd.read_csv("ADRvsRating.csv")

Check failure on line 64 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD901)

machine_learning/ridge_regression/model.py:64:5: PD901 Avoid using the generic variable name `df` for DataFrames
x = df[["Rating"]].values

Check failure on line 65 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD011)

machine_learning/ridge_regression/model.py:65:9: PD011 Use `.to_numpy()` instead of `.values`
y = df["ADR"].values

Check failure on line 66 in machine_learning/ridge_regression/model.py

View workflow job for this annotation

GitHub Actions / ruff

Ruff (PD011)

machine_learning/ridge_regression/model.py:66:9: PD011 Use `.to_numpy()` instead of `.values`
y = (y - np.mean(y)) / np.std(y)

# added bias term to the feature matrix
Expand Down
Loading