Enhancing Cybersecurity Posture With AI

Explore top LinkedIn content from expert professionals.

Summary

Strengthening cybersecurity with AI involves using artificial intelligence to identify, respond to, and prevent cyber threats, addressing vulnerabilities more efficiently in an increasingly complex digital environment.

  • Implement data governance: Develop clear policies for managing AI data security, including risk assessments, cryptographic controls, and secure storage protocols to protect against data poisoning and unauthorized access.
  • Invest in threat detection: Use AI to analyze patterns, detect anomalies, and predict potential cyberattacks, allowing teams to act quickly and mitigate risks before they escalate.
  • Establish robust systems: Build secure infrastructures using technologies like Zero Trust architectures, secure APIs, and ongoing updates to protect AI systems from both traditional and AI-specific vulnerabilities.
Summarized by AI based on LinkedIn member posts
  • View profile for Supro Ghose

    CIO | CISO | Cybersecurity & Risk Leader | Federal & Financial Services | Cloud & AI Security | NIST CSF/RMF | Board Reporting | Digital Transformation | GenAI Governance | Banking & Regulatory Ops

    14,837 followers

    The 𝗔𝗜 𝗗𝗮𝘁𝗮 𝗦𝗲𝗰𝘂𝗿𝗶𝘁𝘆 guidance from 𝗗𝗛𝗦/𝗡𝗦𝗔/𝗙𝗕𝗜 outlines best practices for securing data used in AI systems. Federal CISOs should focus on implementing a comprehensive data security framework that aligns with these recommendations. Below are the suggested steps to take, along with a schedule for implementation. 𝗠𝗮𝗷𝗼𝗿 𝗦𝘁𝗲𝗽𝘀 𝗳𝗼𝗿 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻 1. Establish Governance Framework     - Define AI security policies based on DHS/CISA guidance.     - Assign roles for AI data governance and conduct risk assessments.  2. Enhance Data Integrity     - Track data provenance using cryptographically signed logs.     - Verify AI training and operational data sources.     - Implement quantum-resistant digital signatures for authentication.  3. Secure Storage & Transmission     - Apply AES-256 encryption for data security.     - Ensure compliance with NIST FIPS 140-3 standards.     - Implement Zero Trust architecture for access control.  4. Mitigate Data Poisoning Risks     - Require certification from data providers and audit datasets.     - Deploy anomaly detection to identify adversarial threats.  5. Monitor Data Drift & Security Validation     - Establish automated monitoring systems.     - Conduct ongoing AI risk assessments.     - Implement retraining processes to counter data drift.  𝗦𝗰𝗵𝗲𝗱𝘂𝗹𝗲 𝗳𝗼𝗿 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁𝗮𝘁𝗶𝗼𝗻  Phase 1 (Month 1-3): Governance & Risk Assessment   • Define policies, assign roles, and initiate compliance tracking.   Phase 2 (Month 4-6): Secure Infrastructure   • Deploy encryption and access controls.   • Conduct security audits on AI models. Phase 3 (Month 7-9): Active Threat Monitoring • Implement continuous monitoring for AI data integrity.   • Set up automated alerts for security breaches.   Phase 4 (Month 10-12): Ongoing Assessment & Compliance   • Conduct quarterly audits and risk assessments.   • Validate security effectiveness using industry frameworks.  𝗞𝗲𝘆 𝗦𝘂𝗰𝗰𝗲𝘀𝘀 𝗙𝗮𝗰𝘁𝗼𝗿𝘀   • Collaboration: Align with Federal AI security teams.   • Training: Conduct AI cybersecurity education.   • Incident Response: Develop breach handling protocols.   • Regulatory Compliance: Adapt security measures to evolving policies.  

  • View profile for Rock Lambros
    Rock Lambros Rock Lambros is an Influencer

    AI | Cybersecurity | CxO, Startup, PE & VC Advisor | Executive & Board Member | CISO | CAIO | QTE | AIGP | Author | OWASP AI Exchange | OWASP GenAI | OWASP Agentic AI | Founding Member of the Tiki Tribe

    15,868 followers

    Yesterday, the National Security Agency Artificial Intelligence Security Center published the joint Cybersecurity Information Sheet Deploying AI Systems Securely in collaboration with the Cybersecurity and Infrastructure Security Agency, the Federal Bureau of Investigation (FBI), the Australian Signals Directorate’s Australian Cyber Security Centre, the Canadian Centre for Cyber Security, the New Zealand National Cyber Security Centre, and the United Kingdom’s National Cyber Security Centre. Deploying AI securely demands a strategy that tackles AI-specific and traditional IT vulnerabilities, especially in high-risk environments like on-premises or private clouds. Authored by international security experts, the guidelines stress the need for ongoing updates and tailored mitigation strategies to meet unique organizational needs. 🔒 Secure Deployment Environment: * Establish robust IT infrastructure. * Align governance with organizational standards. * Use threat models to enhance security. 🏗️ Robust Architecture: * Protect AI-IT interfaces. * Guard against data poisoning. * Implement Zero Trust architectures. 🔧 Hardened Configurations: * Apply sandboxing and secure settings. * Regularly update hardware and software. 🛡️ Network Protection: * Anticipate breaches; focus on detection and quick response. * Use advanced cybersecurity solutions. 🔍 AI System Protection: * Regularly validate and test AI models. * Encrypt and control access to AI data. 👮 Operation and Maintenance: * Enforce strict access controls. * Continuously educate users and monitor systems. 🔄 Updates and Testing: * Conduct security audits and penetration tests. * Regularly update systems to address new threats. 🚨 Emergency Preparedness: * Develop disaster recovery plans and immutable backups. 🔐 API Security: * Secure exposed APIs with strong authentication and encryption. This framework helps reduce risks and protect sensitive data, ensuring the success and security of AI systems in a dynamic digital ecosystem. #cybersecurity #CISO #leadership

  • View profile for Victoria Beckman

    Associate General Counsel - Cybersecurity & Privacy

    31,581 followers

    The Cybersecurity and Infrastructure Security Agency together with the National Security Agency, the Federal Bureau of Investigation (FBI), the National Cyber Security Centre, and other international organizations, published this advisory providing recommendations for organizations in how to protect the integrity, confidentiality, and availability of the data used to train and operate #artificialintelligence. The advisory focuses on three main risk areas: 1. Data #supplychain threats: Including compromised third-party data, poisoning of datasets, and lack of provenance verification. 2. Maliciously modified data: Covering adversarial #machinelearning, statistical bias, metadata manipulation, and unauthorized duplication. 3. Data drift: The gradual degradation of model performance due to changes in real-world data inputs over time. The best practices recommended include: - Tracking data provenance and applying cryptographic controls such as digital signatures and secure hashes. - Encrypting data at rest, in transit, and during processing—especially sensitive or mission-critical information. - Implementing strict access controls and classification protocols based on data sensitivity. - Applying privacy-preserving techniques such as data masking, differential #privacy, and federated learning. - Regularly auditing datasets and metadata, conducting anomaly detection, and mitigating statistical bias. - Securely deleting obsolete data and continuously assessing #datasecurity risks. This is a helpful roadmap for any organization deploying #AI, especially those working with limited internal resources or relying on third-party data.

  • View profile for Adnan Masood, PhD.

    Chief AI Architect | Microsoft Regional Director | Author | Board Member | STEM Mentor | Speaker | Stanford | Harvard Business School

    6,411 followers

    In my work with organizations rolling out AI and generative AI solutions, one concern I hear repeatedly from leaders, and the c-suite is how to get a clear, centralized “AI Risk Center” to track AI safety, large language model's accuracy, citation, attribution, performance and compliance etc. Operational leaders want automated governance reports—model cards, impact assessments, dashboards—so they can maintain trust with boards, customers, and regulators. Business stakeholders also need an operational risk view: one place to see AI risk and value across all units, so they know where to prioritize governance. One of such framework is MITRE’s ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) Matrix. This framework extends MITRE ATT&CK principles to AI, Generative AI, and machine learning, giving us a structured way to identify, monitor, and mitigate threats specific to large language models. ATLAS addresses a range of vulnerabilities—prompt injection, data leakage, malicious code generation, and more—by mapping them to proven defensive techniques. It’s part of the broader AI safety ecosystem we rely on for robust risk management. On a practical level, I recommend pairing the ATLAS approach with comprehensive guardrails - such as: • AI Firewall & LLM Scanner to block jailbreak attempts, moderate content, and detect data leaks (optionally integrating with security posture management systems). • RAG Security for retrieval-augmented generation, ensuring knowledge bases are isolated and validated before LLM interaction. • Advanced Detection Methods—Statistical Outlier Detection, Consistency Checks, and Entity Verification—to catch data poisoning attacks early. • Align Scores to grade hallucinations and keep the model within acceptable bounds. • Agent Framework Hardening so that AI agents operate within clearly defined permissions. Given the rapid arrival of AI-focused legislation—like the EU AI Act, now defunct  Executive Order 14110 of October 30, 2023 (Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence) AI Act, and global standards (e.g., ISO/IEC 42001)—we face a “policy soup” that demands transparent, auditable processes. My biggest takeaway from the 2024 Credo AI Summit was that responsible AI governance isn’t just about technical controls: it’s about aligning with rapidly evolving global regulations and industry best practices to demonstrate “what good looks like.” Call to Action: For leaders implementing AI and generative AI solutions, start by mapping your AI workflows against MITRE’s ATLAS Matrix. Mapping the progression of the attack kill chain from left to right - combine that insight with strong guardrails, real-time scanning, and automated reporting to stay ahead of attacks, comply with emerging standards, and build trust across your organization. It’s a practical, proven way to secure your entire GenAI ecosystem—and a critical investment for any enterprise embracing AI.

  • 𝗗𝗮𝘆 𝟭𝟮: 𝗟𝗲𝘃𝗲𝗿𝗮𝗴𝗲 𝗔𝗜/𝗚𝗲𝗻𝗔𝗜 𝘁𝗼 𝗳𝗶𝗴𝗵𝘁 𝗮𝗱𝘃𝗲𝗿𝘀𝗮𝗿𝗶𝗲𝘀 One of the most pressing challenges in cybersecurity today is the global talent shortage, with 𝗮𝗽𝗽𝗿𝗼𝘅𝗶𝗺𝗮𝘁𝗲𝗹𝘆 𝟯.𝟱 𝗺𝗶𝗹𝗹𝗶𝗼𝗻 𝘂𝗻𝗳𝗶𝗹𝗹𝗲𝗱 𝗽𝗼𝘀𝗶𝘁𝗶𝗼𝗻𝘀 𝗽𝗿𝗼𝗷𝗲𝗰𝘁𝗲𝗱 𝗯𝘆 𝟮𝟬𝟮𝟱. This gap poses substantial risks, as unfilled roles lead to increased vulnerabilities, cyberattacks, data breaches, and operational disruptions. While there are learning paths like 𝗩𝗶𝘀𝗮’𝘀 𝗣𝗮𝘆𝗺𝗲𝗻𝘁𝘀 𝗖𝘆𝗯𝗲𝗿𝘀𝗲𝗰𝘂𝗿𝗶𝘁𝘆 𝗰𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗽𝗿𝗼𝗴𝗿𝗮𝗺 to help aspiring cyber professionals upskill and build careers, Generative AI (GenAI) and Agentic AI offers a scalable solution by augmenting existing teams. Together, they can handle repetitive tasks, automate workflows, enhance incident triaging, and automate code fixes and vulnerability management, enabling smaller teams to scale and maintain robust security postures. Additionally, they enhance cybersecurity efforts by improving defenses while keeping humans in the loop to make critical, informed decisions. Here are few concept about GenAI in Cybersecurity that I’m particularly excited about: 1. Reducing Toil and Improving Team Efficiency GenAI can significantly reduce repetitive tasks, enabling teams to focus on strategic priorities: • GRC : Automates risk assessments, compliance checks, and audit-ready reporting. • DevSecOps: Integrates AI-driven threat modeling and vulnerability scanning into CI/CD pipelines. • IAM : Streamlines user access reviews, provisioning, and anomaly detection. 2. Extreme Shift Left GenAI can rapidly enhance “Secure-by-Design” into development processes by: • Detecting vulnerabilities during coding and providing actionable fixes. • Automating security testing, including fuzzing and penetration testing. 3. Proactive Threat Hunting and Detection Engineering GenAI can enhance threat hunting by: • Analyzing logs and sensor data to detect anomalies. • Correlating data to identify potential threats. • Predicting and detecting attack vectors to arm the sensors proactively. 4. Enabling SOC Automation Security Operations Centers (SOCs) can benefit from GenAI by: • Automating false positive filtering and alert triaging. • Speeds up analysis and resolution with AI-powered insights. • Allowing analysts to concentrate on high-value incidents and strategic decision-making. 𝟱. Enhancing Training and Awareness • Delivering tailored training simulations for developers and business users. • Generating phishing campaigns to educate employees on recognizing threats. In 2025, I am excited about the transformative opportunities that lie ahead. Our focus remains steadfast on innovation and resilience, particularly in leveraging the power of Gen/Agentic AI to enhance user experience, advance our defenses and further strengthen the posture of the payment ecosystem.   #VISA #Cybersecurity #PaymentSecurity #12DaysofCybersecurity #AgenticAI

Explore categories